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A B S T R A C T

Biomass gasification enables the transformation of biomass feedstock into syngas suitable for further energy
conversions. Mathematical models of gasification are not only valuable tool for the design and optimization of the
processes, but could be also employed for online prediction and process control. In this work, the potential of
using nonlinear autoregressive networks with exogenous inputs (NARX) for predicting the gasification process
when a lower amount of experimental data is available was studied. The analysis of using an open-loop NARX
network for an online prediction of the syngas composition in a downdraft gasifier at different data recording
frequency was performed. The predicted results showed that by decreasing the data recording frequency, the
prediction error increases. Furthermore, the possibility of improving the NARX network at lower data recording
frequency was analysed by expanding the training dataset to reduce discrepancies between predicted and
measured results. Inclusion of four data sets made neural network more robust and flexible for operating with
fewer data points. Practical significance of results can be seen in the application of open-loop network for online
prediction and control of the gasification process at lower data recording frequency as a part of a model predictive
control module.
1. Introduction

Ever since the industrial era, CO2 has been released into the atmo-
sphere at an alarming rate causing disastrous global climate changes and
release of permafrost carbon stored in Arctic and sub-Arctic regions
(Schuur et al., 2015). In order to decrease the global average temperature
rise and maintain it below 2 �C compared to pre-industrial levels, actions
have been taken through technological advancement and sustainable
development as part of the Paris Agreement (Rogelj et al., 2016).
Ever-increasing energy demand has encouraged the energy sector to-
wards a cleaner and more efficient renewable energy sources (Sen and
Ganguly, 2017). Biomass has shown itself as an environmentally abun-
dant energy source, and in combination with other renewables, namely
solar, water, wind and geothermal energy, represents one of possible
replacements for fossil fuels. Biomass can also be used as a feedstock in
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various synthesis processes of chemicals such as hydrogen and its de-
rivatives (Guo et al., 2015).

Biomass gasification is a highly efficient and clean conversion tech-
nology used to convert biomass feedstock of various origins and com-
positions into products of known chemical compositions suitable for
further energy conversions (F�ozer et al., 2020). Biomass gasification
systems produce by-products which are readily marketable and not toxic
to the environment. The gasification process is a thermochemical con-
version by which feedstock in combination with gasifying agents at an
elevated high-temperature undergoes partial oxidation, and is thus con-
verted into a gaseous mixture named syngas composed out of hydrogen,
carbon monoxide, carbon dioxide, methane and other light hydrocarbons
(Mikulandri�c et al., 2014). Biomass characteristics such as moisture
content, ash and char content, thermal conductivity, organic and inor-
ganic constituents cause slight differences in the performance of
gineering, MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an,

r (J. Baleta), hrvoje.mikulcic@fsb.hr (H. Mikul�ci�c), robert.mikulandric@be.

d 30 November 2020
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:dcerinski@simet.unizg.hr
mailto:baleta@simet.unizg.hr
mailto:hrvoje.mikulcic@fsb.hr
mailto:robert.mikulandric@be.atlascopco.com
mailto:robert.mikulandric@be.atlascopco.com
mailto:jin.wang@hebut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.clet.2020.100029&domain=pdf
www.sciencedirect.com/science/journal/26667908
www.journals.elsevier.com/cleaner-engineering-and-technology
https://doi.org/10.1016/j.clet.2020.100029
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.clet.2020.100029


Fig. 1. Downdraft gasification reactor scheme (Mikulandri�c et al., 2016).

Table 1
Biomass ultimate analysis.

Ultimate analysis, wt%

Carbon 47.4
Hydrogen 5.63
Moisture 7.87
Ash 0.55
Chlorine 0.01
Oxygen (by difference) 38.54

D. Cerinski et al. Cleaner Engineering and Technology 1 (2020) 100029
individual biomass feeds. The design of the reactor, as well as operating
parameters, strongly influence performance, produced syngas composi-
tion and system efficiency during the gasification process (Baruah et al.,
2

2017). Albeit, gasification being a well-known technology, there still
exist hurdles to pass for its complete utilization, as well as integration
into modern energy production. Issues such as high investment costs and
the necessity for pre-treatment and cleaning of syngas, show the need for
further research and should be resolved to increase gasification share in
the global energy consumption (Ruiz et al., 2013). Biomass gasification
technology can economically meet energy demands in undeveloped re-
gions, while consequently lowering their waste products (Ejiofor et al.,
2020).

Gasification reactors can be classified into several groups, most
notably auto-thermal and allo-thermal reactors which can be further
divided into fixed bed, fluidized bed and entrained flow gasifier (Farzad
et al., 2016). Selection of a particular type of gasifier has serious re-
percussions on particle residence time, as well as on heat exchange inside



Fig. 2. Air volume flow for all experiments (Mikulandri�c et al., 2016).

Fig. 3. Fuel mass flow for all experiments (Mikulandri�c et al., 2016).
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the reactor. Fluidized bed gasification may show better results than fixed
bed gasification due to the bed temperature being held under the ash
slagging temperature, thus reducing the volatilization of elements such as
sodium and potassium (Gabra et al., 2001). Fixed bed reactors are more
favourable for economics at the small-scale, showing longer particle
residence time than their fluent bed counterparts, as well as slower heat
exchange due to slower particles velocity through the reactor (Wang
et al., 2008).

Numerical models are developed to virtually simulate the gasification
process in order to improve its overall efficiency, as well as to ensure the
3

quality throughout a various range of operating conditions. Moreover,
numerical models are recognized as a valuable tool for the optimization
process, which is emphasized as an important step in the development of
manufacturing process, and also separate processes, like biomass gasifi-
cation (Perkovi�c et al., 2017). Predictions of a variable’s influence on the
overall system can be achieved by simulating different scenarios and thus
valuable information may be gained quickly and safely. Artificial neural
networks (ANN) represent a non-physical modelling approach with the
ability of machine learning to correlate experimental input and output
data to approximate any continuous function to an arbitrary precision



Fig. 4. Open-loop (left) and closed-loop (right) NARX network (Salah et al., 2016).

Table 2
Experimental data preparation.

Data recording frequency,
min

Time delay,
min

Number of time steps in all
experiments

0.5 (original) 1 3,033
1 2 1,514
1.5 3 1,009
2 4 754
2.5 5 604
3 6 502

Fig. 5. Determination of experimental dataset for training procedure.

Table 3
APE for the different data recording frequency.

Case Data recording frequency,
min

H2 APE, vol
%

CO APE, vol
%

CH4 APE, vol
%

1 0.5 0.9575 0.9796 0.2731
2 1 0.963 2.0434 0.4637
3 1.5 1.1864 1.9182 0.6606
4 2 1.6587 1.9426 0.6698
5 2.5 1.3995 2.0990 0.9190
6 3 1.4145 2.4050 0.8008
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even without prior knowledge on the structure of the function for the
process in question (Ponton and Kleme�s, 1993). ANN models are widely
known and accepted as a technology able to work with non-linear
problems, and after a training period, may predict model outputs at
4

high speeds. More efficient plant design, emission reduction and biomass
power efficiency may be achieved as more research is conducted for
biomass gasification modelling (Dang et al., 2021). These models have
recently proven their worth in energy-related processes such as biodiesel
production (Piloto-Rodríguez et al., 2013), distillation processes (Kleme�s
and Ponton, 1992) and predicting net output power from a system using
various biomass feedstocks, and also at various operating conditions
(Safarian et al., 2020). In a study by Pandey et al. (2016) syngas yield was
predicted, in addition to which the lower heating value of gas and other
gasification products such as tars and entrained char were predicted.

Dynamic neural networks are effective at predicting time-variable
relationships for short-term prediction (Mohebbi et al., 2019). These
networks are different as the output does not only depend on current
inputs, but previous values as well. By using feedback loops and/or
recurrent connections a degree of the memory capacity of the network
may be shown (Salah et al., 2016). Nonlinear autoregressive networks
with exogenous inputs (NARX) represent dynamic types of neural net-
works which can be used to describe process dynamics of non-linear
chaotic systems. NARX relates current values of a time series to both
past values of the same series and current and past values of the exter-
nally determined series that influences the series of interest, thus offering
greater versatility and adaptability (Billings, 2013). These models have
limited feedback architectures in comparison to other recurrent neural
models, while research of Siegelmann et al. (1997) has shown promise
for comparable results to Turing machines. NARX models have seen
success in various engineering areas. Methane generation rates for a
landfill in Regina, SK, Canada were predicted using a two-stage time
series model (Fallah et al., 2020). The research focused on the influence
of missing data imputation coupling with time series NARX models.
Potential benefits of missing data estimation were evaluated using
multilayer perceptrons coupled with the NARX model. Shahbaz et al.
(2020) used a NARXmodel to determine syngas composition from a fixed
bed downdraft gasifier using waste bottom ash as a catalyst. Impact of
various process parameters on gas yield was investigated, namely tem-
perature, airflow rate and catalyst loading. Study found that usage of
NARX model can assist in optimizing process parameters before under-
taking commercial-scale development and thus reducing development
time and potential costs. Syngas production rates for a reactor using
bagasse wash water were predicted using a NARX network to model
unsteady state behaviour of the reactor (Jain et al., 2015). Developed
model represented dynamic behaviour of the reactor and was able to
recursively predict and forecast syngas production rate. In the research
by Mikulandri�c et al. (2020) a NARX model was developed to predict
syngas temperature and composition in a fixed bed gasifier. The NARX
model required only a limited amount of data for training and was able to
accurately predict syngas temperature in changing operating conditions.
The study suggests that for further improvement of the NARX prediction
capability sub-models for separate reactor regions must be developed.
NARX models appear to be a promising approach to describe non-linear
systems with significant delays in which mass and energy accumulation



Fig. 6. NARX H2 predictions for different data recording frequency.
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needs to be considered. In the study by (Yucel et al., 2019) NARX neural
network model was used to predict the gasification process in a fixed bed
downdraft gasifier. Using experimental gasification data, the networks
were trained and validated. Authors concluded that using temperature
distribution in NARX and ANN-based models led to an increase in pre-
diction accuracy for gasification products.

Considering overview of the recent literature given above, biomass
gasification represents a promising technology suitable to enhance the
penetration of renewable energy sources into the energy sector. Also, the
provided literature review indicates increase in utilizing the ANN
modelling approach in the past few years to simulate the biomass gasi-
fication process. Mentioned researches mostly showed a good capability
of using ANN models for improvement of the gasification process,
especially NARX networks were used to simulate the dynamic behaviour
in the reactor. The analysis of using NARX neural network when a lower
amount of experimental data is available is not available in literature.
Consequently, the potential of using NARX neural network for an online
prediction of syngas composition in a downdraft gasifier at different data
recording frequencies was studied in this work. The results showed that
by decreasing the data recording frequency, the prediction error in-
creases. It was necessary to expand the experimental dataset used for
training accordingly to take into account various operating conditions.
5

2. Materials and methods

A proper method for building ANN cannot be generalized, as it highly
depends on the process itself and on the preparation of the experimental
data. The ANN simulationmethod can be divided into few steps. Firstly, a
previously structured ANN is trained on the training set of experimental
data, and after this, trained neural network is applied on a completely
new set of experiments (Hudson Beale et al., 2017). ANNs can be clas-
sified into static and dynamic networks. Static neural networks calculate
the output directly from the input data through the feedforward
connection. Including some delays or taking into account the influence of
past values through the feedback loop is not possible. On the other hand,
the calculated output of dynamic networks depends also on previous
inputs and outputs of the network. In this work, a dynamic neural
network will be used, since the observed biomass gasification process
should be mathematically described over operating time.

Following subsections are structured as follows. Firstly, the gasifica-
tion reactor with its operating conditions is described, then the simula-
tion setup of a dynamic NARX neural network used in this work is given.
Finally, the preparation method of measurement data required for the
ANN modelling procedure will be provided.



Fig. 7. NARX CO predictions for different data recording frequency.
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2.1. Gasification plant and operating conditions

Measurement data for modelling purposes were taken from the
literature (Mikulandri�c et al., 2016). The observed gasification plant is a
fixed bed downdraft gasifier located in Pirna, Germany operated by TU
Dresden with a thermal input of 75 kWth. The biomass feedstock is fed
into the storage container, located in the front of the biomass feeding
control system. When the amount of biomass in the reactor drops below a
certain level, a manually controlled valves in the feeding control system
are opened and biomass enters the shredder. After the shredding process,
biomass is continuously fed into the gasifier. In the gasification process,
air is used as a gasifying agent, while the distribution and the flow rate
are controlled by air pumps. At the bottom of the reactor, ash is collected
manually through the ash valve. The whole gasifier scheme is shown in
Fig. 1. For modelling purposes in this work, two sets of experiments were
taken into consideration. Both sets have 4 experiments, where the first set
was measured in 2006 (Mikulandri�c et al., 2014), and the second one was
measured in 2013 (Mikulandri�c et al., 2016). A more detailed description
of the plant, along with experiment sets used in this work can be found a
research by Mikulandri�c et al. (2016).

Wood chips were used as a biomass fuel in all experiments. Biomass
analysis is available only for the first set of experiments (1–4) from 2006.
Biomass lower heating value is 17.473 MJ/kg while the ultimate analysis
6

on wet basis performed at TU Dresden laboratory is shown in Table 1. In
experiments from 2013, the same type of biomass was used as in ex-
periments from 2006, although the precise composition is unknown.

The gasification plant is equipped with measuring devices to track
various process parameters over time, such as air volume flow rate, fuel
mass flow rate, pressure drop in the reactor, syngas temperature,
composition at the gasifier outlet and the air inlet temperature. The data
measurement frequency is 30 s, while the experiment duration depends
on the initial state of the gasifier. Input values used for the model
development were air volume flow and fuel mass flow, while the syngas
composition (H2, CO and CH4) was the modelling output. Air flows for all
experiments are shown in Fig. 2, while fuel flows are shown in Fig. 3.
While comparing two sets of experiments, higher fuel flow rates and
lower airflow rates were noticed in the second experiment set from 2013.
Mikulandri�c et al. (2020) concluded that this behaviour was indicated
due to the shift of complete combustion process in the experiment set
from 2006 to the incomplete combustion process in the experiment set
from 2013. They prescribed this shift to the possible change of biomass
quality, different amount of ash sintering or some unknown reason.
2.2. Dynamic NARX model

In dynamic neural networks calculated output values are a function of



Fig. 8. NARX CH4 predictions for different data recording frequency.

Table 4
APE for different number of experiments as training dataset.

Case Experiments for training H2 APE, vol% CO APE, vol% CH4 APE, vol%

1.5 min 3 min 1.5 min 3 min 1.5 min 3 min

2 1–2 – – 1.9182 2.4050 0.6606 0.8008
3 1–3 1.1864 1.4145 1.5193 2.0875 0.5732 0.9286
4 1–4 1.5630 1.3953 1.7538 2.1410 0.5645 0.6586
5 1–5 1.5344 1.3545 1.8830 1.7602 0.5416 0.6812
6 1–6 1.0820 1.2208 1.9242 1.1559 0.3648 0.4518
7 1–7 0.9926 1.0684 0.8812 1.0744 0.3425 0.4256
8 1–8 0.9739 1.0563 0.8654 1.0612 0.3262 0.4057
9 1–2, 5–6 1.2025 1.1449 1.1373 1.3896 0.3806 0.4973
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the current input data along with previous values of input and output
data through the feedback loop and/or recurrent connections, so-called
delays. In this work, a dynamic NARX network was used. NARX is a
recurrent dynamic neural network suitable for modelling nonlinear dy-
namic processes (Hudson Beale et al., 2017), like biomass gasification.
The output value for a time t is determined by the following expression:

byðtÞ¼ f
�
yðt� 1Þ; yðt� 2Þ;…; y

�
t� ny

�
; uðt� 1Þ; uðt� 2Þ;…; uðt� nuÞ

�
; (1)

where terms ny and nu are the number of output or input delays. Usually,
7

the number of input delays is equal to the number of output delays, ny ¼
nu. Those implemented delays represent the memory ability of the
network. Training procedure of the NARX network can be performed in
two steps as shown in Fig. 4.

The first step is an open-loop training process for creating the series-
parallel network architecture. The feedforward multilayer network is
trained on experimental input and output data using the backpropagation
algorithm. Inputs of the model are input vector um (fuel flow and airflow)
with a certain amount of delays (nu) andmeasured output value ym, again
with its delays. After, trained open-loop network can be applied for on-



Fig. 9. NARX H2 predictions with the improved training procedure.
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line prediction of the process on a completely new set of input data if
measuring the output data is available in a real-time. Previously trained
network can be closed by implementing the feedback loop, as shown on
the right-hand side in Fig. 4 and generating the fully parallel network
architecture. When using a closed-loop network there is no need for
measuring the output data in the real-time, thus it can be applied to
offline prediction of the output value.

In this work, an open-loop networkwas used to realise the potential of
using NARX neural network for online prediction of the biomass gasifi-
cation process. The NARX network was structured as follows; input and
output layers were connected with one hidden layer of 5 neurons and two
delays were taken for the calculation. For a connection between hidden
and output layer, a tan-sigmoid transfer function was used, while the
linear transfer function was used in the output layer. Bayesian regulari-
zation method was used as a training algorithm, and a maximum number
of training epochs was set to 600 to avoid the model overfitting. The
training data was divided using the function ‘divideblock’ into three
contiguous dataset blocks, namely training set, validation set and test set.
The training set was used for the calculation of gradient and updating the
network weights and biases. The validation set was monitored through
the training and its error normally decreased during the training process,
but when the network started to overfit the data, the validation set error
started to increase. At the end of the process, the weights and biases at the
minimum of the validation error were taken. On the other hand, a test set
8

was monitored during the training process to see if its error reaches a
minimum at a significantly different iteration number than the validation
set error, which might indicate a poor division of the data set (Hudson
Beale et al., 2017). The training process was running in several training
sessions. Each session started with different initial weights and biases,
and a different division of training dataset. These different conditions can
lead to a different solution of the same problem and the session with the
lowest prediction error was picked. The final trained network was then
applied again to the same training dataset and to a completely new ex-
periments set. The preparation of the data for training and using the
network in online prediction procedure is described in the next section.

2.3. Preparation of the experimental data

In all experiments measurement of the syngas composition started
when the syngas temperature at the outlet was around 250 �C or above.
The aim of the experiment was to ensure a stable syngas production for
approximate 3 h, although it was not completely achieved in all experi-
ments (Mikulandri�c et al., 2020). For that reason, the amount of exper-
imental data used for training the neural network is reduced compared to
the data shown in Figs. 2 and 3. The duration of experiments varied from
107 min for experiment 6 up to 345 min for experiment 1. The purpose of
this study was to analyse the possibility of predicting the syngas
composition for lower recording data frequency. Originally, the



Fig. 10. NARX CO predictions with the improved training procedure.
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experimental data was recorded every 30 s, while in this study, the
recording frequency varied from 30 s up to 3 min. Accordingly, the
experimental data was prepared as an average value during the selected
time period. All information about the prepared data is shown in Table 2.

3. Results and discussion

Previously explained experimental data was used for creating and
using NARX ANN model for the syngas composition. The output of the
model is a syngas composition, expressed as the volumetric fraction (vol
%) of H2, CO and CH4. The main parameter to evaluate the developed
neural network model was Average Prediction Error (APE), which rep-
resents averaged absolute error for all experiments, expressed in vol% of
gas content. This section is divided into three parts. Firstly, the experi-
mental dataset for training procedure was determined. In the second part,
the influence of different data recording frequency was analysed. In the
last section, the possibility of improving NARX predictions with lower
recording data frequency was studied.

3.1. Determination of experimental dataset for the training procedure

Firstly, the number of experiments for a training procedure, to pro-
vide satisfactory prediction accuracy, needs to be determined. The
9

dataset with an original data recording frequency of 30 s is used for
analysis. The number of experiments for training procedure is varied
from using only experiment 1 to using experiments 1–8. Separate NARX
networks are created for H2, CO and CH4. In Fig. 5, the change of APE by
increasing the training dataset is shown. It can be noticed that in either
case, the first experiment is not sufficient to provide the desired accuracy.
According to the presented figure, for H2 predications first 3 experiments
are taken as the training dataset, while for CO and CH4 predictions ex-
periments 1 and 2 are sufficient as the training dataset.

3.2. Data recording frequency analysis

As it was shown before in Table 2, the amount of data is significantly
reduced while decreasing the data recording frequency. To analyse the
influence of data recording frequency on NARX predictions of H2, CO and
CH4, six different cases are simulated as stated in Table 3. Data recording
frequency is varied from 30 s (original data) to 3 min. APEs for all cases
are shown in Table 3. While observing H2 predictions, it can be noticed
that a lower data recording frequency increases the APE, with the
exception of Case 4 which resulted in the highest average error. Also, it is
interesting to notice that Case 2 achieved similar APE as the original Case
1, despite reducing the dataset in half. CO prediction errors are higher for
all cases compared to Case 1, which indicates the necessity for further



Fig. 11. NARX CH4 predictions with improved training procedure.
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improvement of the model. APEs of CH4 predictions increase in a similar
trend as for H2 predictions, while the highest prediction error is recorded
in Case 5.

In the following figures, dynamic NARX predictions of H2, CO and
CH4 volume fractions from Case 1 (original data recording frequency)
and Case 6 (the lowest data recording frequency) are compared to the
measurement data. Generally, the highest prediction error of H2 is
recorded within experiments 5, 6 and 7 for both cases, as it is shown in
Fig. 6. Also, deviations of Case 6 are much higher compared to Case 1 for
all experiments, which is in a correlation with results given in Table 3. It
can be noticed that in experiments 5–8, Case 6 deviates more compared
to experiments 1–4. This is can be prescribed to a lack of experiments
from 2013 (5–8) in the training dataset.

When CO predictions in Fig. 7 are observed, it can be noticed that
Case 1 matched the measurement data for all experiments with satisfying
accuracy. On the other hand, CO predictions with Case 6 deviate mostly
for all experiments, except for the first two experiments which are used as
the training dataset. CO predictions highly deviate for experiments 5–8
due to the same reason of lacking the experiment from 2013 in the
training dataset, as mentioned in H2 predictions. Since the predictions
with original data recording frequency provide satisfactory matches with
the experimental data in all experiments, it can be concluded that
decreasing the data recording frequency implies the necessity for NARX
10
model improvements in a way of expanding the training dataset.
Similar to CO predictions, CH4 predictions with Case 1 matched the

measurement data for all experiments as it is shown in Fig. 8. Again, by
reducing the data recording frequency to 3 min, modelling results
significantly deviate from the measurement data, especially for experi-
ments 5–8 due to the same reason stated before. To decrease deviations
of NARX predictions at lower data recording frequency, a training dataset
needs to be expanded which is studied in the next section.

3.3. Improvement of NARX predictions

Possibility of improving NARX predictions at lower data recording
frequency is analysed by expanding the training dataset. As it is shown in
Table 4, the training dataset was varied from the referenced dataset used
in the previous section to a dataset with experiments 1–8. Additionally,
Case 9 is proposed where 4 experiments are used as the training dataset,
first two experiments from 2006 (experiments 1–2) and first two exper-
iments from 2013 (experiments 5–6). APEs are analysed for two data
recording frequency cases 1.5 min and 3 min. While observing APEs, it
can be noticed that expanding the training dataset, significantly reduces
the error. Logically, the lowest APE is achieved with Case 8 where all
experiments are used as the training dataset. This neural network doesn’t
provide a promising solution, since there is no additional dataset where
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the network could be tested. Case 9 is chosen as an optimum solution
since only 4 experiments are used as the training dataset, while the APE is
lower compared to Case 4, where the same number of experiments is
used. This could be addressed to including experiments from 2006 to
2013 in the training dataset, which makes the trained neural network
more robust and flexible to predict syngas composition at different
operating conditions.

Comparison of referenced case predictions (Case 3 for H2 predictions
and Case 2 for CO and CH4 predictions) with Case 9 predictions and the
measurement data is given in Fig. 9 (H2), Fig. 10 (CO) and Fig. 11 (CH4).
The data recording frequency is 3 min, while the measured data represent
time average values of 3 min for easier comparison of the predictions. It
can be noticed that in Case 9 deviations are reduced for all observed
gasses and experiments. It is important to notice that in Case 9 H2 pre-
diction deviations are significantly reduced in experiments 5–8,
compared to Case 3.

Before mentioned high deviations of CO predictions in experiments
5–8 are reduced also. It is visible that including the experiments from
2013 into the training dataset in Case 9, highly reduced CO prediction
errors compared to Case 2.

CH4 prediction deviations are reduced in Case 9 for all experiments.
Including the experiments from 2013 (5–6), highly improved the pre-
diction capability for all experiments, similar as stated before for H2 and
CO predictions.

Considering the overall results, it can be concluded that the NARX
neural network is suitable for online prediction of syngas composition in
biomass gasification process at lower data recording frequencies. While
lowering the data recording frequency, the training dataset needs to be
expanded to train the network for various operating conditions.

4. Conclusion

Biomass gasification process enables conversion of bulky raw mate-
rial into more suitable energy source of syngas. Mathematical models of
gasification are not only valuable tool for the design and optimization of
the processes, but could be also employed for online prediction and
process control. With that aim, present contribution investigated the
possibility of using NARX ANN in the fixed bed downdraft gasifier to
predict the syngas composition for lower recording data frequency. An
open-loop network consisting of input and output layers connected with
one hidden layer of 5 neurons was taken for the calculation. Sensitivity
analysis concerning data recording frequency in the range from 30 s to 3
min revealed severe disagreement between measurement data and pre-
dictions, especially for CO and CH4 concentrations, which motivated
second sensitivity analysis of training dataset expansion. Expansion of
the training dataset by including four sets of data made the neural
network more robust and flexible to predict syngas composition at
different operating conditions. Practical significance of results can be
seen in application of open-loop network for online prediction and con-
trol of the gasification process. Future work should investigate imple-
mentation of NARX network in the model predictive control module and
analysis of possible benefits reached by such an approach.
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