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a b s t r a c t 

In this paper, a corrugated plate heat exchanger in solar energy systems is used to investigate heat trans- 

fer and fluid flow characteristics of various nanofluids. By adding various nanoparticles (Al 2 O 3 -30 nm, 

SiC-40 nm, CuO-30 nm and Fe 3 O 4 -25 nm) into the base fluid, effects of nanofluid types and particle con- 

centrations (0.05 wt.%, 0.1 wt.%, 0.5 wt.% and 1.0 wt.%) on the thermal performance of the plate heat 

exchanger are analyzed at flow rates in the range of 3–9 L/min. Results indicate that both heat transfer 

enhancement and pressure drop for nanofluids show significant increases compared to the base fluid. The 

Fe 3 O 4 -water and CuO-water nanofluids show the best and the worst thermal performances of the plate 

heat exchanger, respectively. When 1.0 wt.% Fe 3 O 4 -water nanofluid is used as the working fluid, com- 

pared to DI-water, the convective heat transfer coefficient is increased by 21.9%. However, an increase of 

10.1% in pressure drop is obtained for the 1.0 wt.% Fe 3 O 4 -water nanofluid. Finally, empirical formulas of 

experimental Nusselt number are obtained based on the experimental data. A new way to predict the 

thermal performance for various nanofluids in heat transfer systems is provided. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Solar energy has become an important part of sustainable en-

rgy to solve problems of fossil fuel shortages and serious environ-

ental pollution. Developing new solar energy technologies and

mproving the utilization are research focuses at present. Nanoflu-

ds are high-efficient heat transfer media, and numerous studies

ave proven that thermal conductivities of nanofluids are higher

han those of conventional fluids (such as water, oil and ethylene

lycol) [1] . 

Nowadays, nanofluids have been widely used in solar energy

ystems, heat exchangers, automobile radiators, electronic chips,

tc. However, especially in a solar energy system, nanofluids have a

reat potential [2] , some practical limitations and enormous chal-

enges [3] . Michael and Iniyan [4] improved the thermal perfor-

ance of photovoltaic thermal collectors using CuO-water nanoflu-

ds. They found that the thermal efficiency increased up to 45.76%

or a CuO-water nanofluid with 0.05% volume fraction, compared

o water at a mass flow rate of 0.01 kg/s. Chen et al. [5] pointed
∗ Corresponding authors. 
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ut that the solar-thermal conversion efficiency increased with

he increase in the nanoparticle concentration of multi-walled car-

on nanotubes (MWCNTs). They found that 0.01 wt.% MWCNTs

anofluid with a fluid thickness above 0.5 cm could absorb nearly

ll the incident energy. Yurdda ̧s [6] numerically conducted a com-

arison of the thermal performance for various nanofluids in an

vacuated tube solar collector. It was found that the outlet tem-

erature of the water tank increased by 14.09% for 5 vol.% Cu-

ater nanofluid compared to water. Abbas et al. [7] presented

mprovement in photovoltaic thermal (PV/T) systems. They found

hat a volume fraction of nanoparticle concentration below 5%

as appropriate to avoid a clustering process of nanoparticles.

adwan and Ahmed [8] developed a new method to cool con-

entrating photovoltaic systems by using a wide microchannel

eat sink with nanofluids (SiC-water and Al 2 O 3 -water nanoflu-

ds). They found that the cell electrical efficiency increased by

4% for a 4% SiC-water nanofluid at Re = 12.5. Mercan and Yurdda ̧s

9] both experimentally and numerically analyzed the effects of

arious factors (type of nanofluid, volume fraction of nanopar-

icles, collector angle, mass flow rate and number of evacuated

ubes) on the heat transfer characteristics of evacuated tube so-

ar collectors. They found that when the volume fraction is 5% and

he number of tubes is 24, the tank outlet temperature increased
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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NOMENCLATURE 

A total heat transfer area, m 

2 

c p specific heat, J kg −1 K 

−1 

h convective heat transfer coefficient, W m 

−2 K 

−1 

L plate length, mm 

N number of corrugated plates 

Nu Nusselt number 

P pressure, Pa 

Pr Prandtl number 

Q heat transfer rate, W 

Re Reynolds number 

t corrugation pitch, mm 

U overall heat transfer coefficient, Wm 

−2 K 

−1 

V volume flow rate, L min 

−1 

W plant width, mm 

Greek symbols 

β corrugation angle, 

δ plate thickness, mm 

ϕ volume concentration, vol.% 

λ thermal conductivity, W m 

−1 K 

−1 

μ dynamic viscosity, Pa s 

ρ density, kg m 

−3 

ω mass fraction of nanoparticles, wt.% 

Subscripts 

ave average 

c cold 

d dispersant 

h hot 

in inlet 

nf nanofluid 

out outlet 

p particle 

w water 

Abbreviation 

LMTD logarithmic mean temperature difference, K 

by 4.13% and 6.80% for Al 2 O 3 -water and CuO-water nanofluids,

respectively. 

In order to widen the application range of nanofluids, a mix-

ture of water and ethylene glycol is often used as the base fluid

to prepare the nanofluid. Xu et al. [10] investigated the physical

properties of water-ethylene glycol based graphene oxide nanofluid

to improve the photo-thermal conversion performance of a direct

absorption solar collector. Compared with the base fluid, the effi-

ciency of the receiver increased by 70% with 240 s irradiation du-

ration when this nanofluid was used. They found that the graphene

oxide nanofluid showed a great potential for practical applications.

Hashimoto et al. [11] proposed a correlation formula between the

Nusselt number and the Reynolds number for the SiO 2 nanofluid.

It was found that the 50 wt.% SiO 2 -ethylene glycol/water nanofluid

showed up to 25% increase in heat transfer performance, compared

to the ethylene glycol/water solution. The water-ethylene glycol

based ZnO nanofluid was used as the working fluid in a flat plate

solar collector by Choudhary et al. [12] . A 70.28% thermal efficiency

for 1.0 vol.% ZnO nanofluid was obtained at a flow rate of 90 L/h.

Based on a mixture of ethylene glycol and water (EGW), the ther-

mal performance of nanofluids in an indoor electric heater was in-

vestigated by Chen et al. [13] . They found that the heating perfor-

mance increased by 14.7% using 0.5% Fe 3 O 4 -EGW nanofluid under

a magnetic field of 100 mT. Convective heat transfer characteristics

of ferrofluids inside a pipe with various external magnetic fields
ere investigated by Wang et al. [14] . They found that 261% en-

ancement on heat transfer was obtained using five adjacent mag-

etic cannulas at high Reynolds number. 

Nanofluids are also used as coolants to cool devices and im-

rove the operation stability. Based on a mixture of distilled wa-

er (DW) and ethylene glycol (EG), Said et al. [15] carried out an

nvestigation of the heat transfer performance of Al 2 O 3 and TiO 2 

anofluids in an actual automobile radiator. They found that the

ost stable sample from 0.3 vol.% Al 2 O 3 -DW/EG nanofluids with

:1 mass ratio of nanoparticles to Arabic gum (AG) surfactant was

he most stable nanofluid within the range of the tests. Devireddy

t al. [16] improved the performance of automobile radiators us-

ng glycol solution based TiO 2 nanofluids, and the 0.3 vol.% TiO 2 -

W/EG nanofluid resulted in a heat transfer enhancement of 35%.

agarajan et al. [17] investigated thermophysical properties of an

lumina-silica hybrid nanocoolant, and they found that the over-

ll heat transfer coefficient of a jacketed vessel filled with this

ybrid nanocoolant increased by 52.8% compared to conventional

oolant. Al-Rashed et al. [18] both experimentally and numerically

tudied the performance of heat sinks for CPU cooling using CuO-

ater nanofluids. They concluded that by using 2.25 vol.% CuO

anofluid, 7.7% improvement of the thermal conductivity was ob-

ained at a heat load of 115 W at a Reynolds number of 1100.

umar and Kumar [19] numerically studied heat transfer char-

cteristics of Al 2 O 3 -water nanofluids in six circular channel heat

inks to cool electronic chips. They found that increments of 12%,

6%, and 40% in the heat transfer coefficient were obtained for

.25%, 0.5%, and 0.75% Al 2 O 3 -water nanofluids compared to water,

espectively. 

The energy conversion rate of solar energy systems is im-

roved, when nanofluids are used in the heat exchangers. Re-

ent applications of nanofluids in heat exchangers were reviewed

y Pordanjani et al. [20] . Heat transfer enhancements of non-

ewtonian nanofluids (like aqueous carboxymethyl cellulose based

e 2 O 3 , Al 2 O 3 and CuO nanofluids) in a shell and helical coil heat

xchanger were experimentally investigated by Naik and Vinod

21] . Results revealed that the overall heat transfer coefficient of

he CuO nanofluid had a maximum enhancement of 29% for a mass

oncentration of 1%. Li et al. [22] investigated heat transfer and

uid flow characteristics of carbon-acetone nanofluids in a micro-

hannel heat sink. They pointed out that about 73% enhance-

ent in the heat transfer coefficient was found when 0.1 wt.%

arbon-acetone nanofluid was used as the working fluid. Qi et al.

23] analyzed pressure drops and heat transfer characteristics of

iO 2 -water nanofluids in corrugated double-tube heat exchangers.

ompared with deionized water in the corrugated double-tube

eat exchanger, heat transfer rates of TiO 2 -water nanofluids with

ass fractions of 0.1%, 0.3%, and 0.5% increased by 10.8%, 13.4%

nd 14.8%, respectively. Mazaheri et al. [24] analyzed the entropy

eneration and exergy destruction of a graphene nanoplatelets

anofluid in a ribbed triple-tube heat exchanger (RTTHX). It was

bserved that the total exergy destruction of the whole RTTHX

as reduced when the nanoparticle mass fraction increased. Ku-

ar and Chandrasekar [25] analyzed heat transfer characteristics

f double helically coiled tube heat exchangers with MWCNT-

ater nanofluids based on a comparison of the Dean Number.

t was found that for a 0.6 vol.% nanofluid, the Nusselt number

nd pressure drop increased by 30% and 10% at a Dean num-

er of 20 0 0, respectively. Radkar et al. [26] investigated convec-

ive heat transfer characteristics of helical copper tube heat ex-

hangers under a constant wall temperature condition. They found

hat the average Nusselt number increased by 18.6% for 0.25 vol.%

nO nanofluid. Bianco et al. [27] numerically investigated the

eat transfer performance of an asymmetric heated channel filled

ith Al 2 O 3 -water nanofluid. The increase of the Nusselt number

as 15% for the 6% Al 2 O 3 -water nanofluid at a Reynolds num-
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Fig. 1. Scanning electron microscope (SEM) images of various nanoparticles. 

Fig. 2. Process of nanofluid preparation. 

Table 1 

Thermophysical properties of nanoparticles and deionized water (25 °C). 

Material Particle morphology Particle size (nm) Density (kg/m 

3 ) Specific heat (J/kg K) Thermal conductivity (W/m K) 

DI-water / / 997 4180 0.613 

Al 2 O 3 Spherical 30 3900 880 42.34 

SiC Nearly spherical 40 3370 1340 150 

CuO Nearly spherical 30 6500 540 18 

Fe 3 O 4 Spherical 25 5180 670 80 
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er of 10 0 0. Huang et al. [28] investigated thermal performance

f Al 2 O 3 and Al 2 O 3 −MWCNT hybrid nanofluids in a chevron plate

eat exchanger. They proposed a correlation to predict all the

xperimental data within an error band of ±10%. Bhattad et al.

29] pointed out that increasing the volume ratio of MWCNT

anoparticles in an Al 2 O 3 −MWCNT hybrid nanofluid was benefi-

ial for the performance improvement of the plate heat exchang-

rs. Shirzad et al. [30] numerically investigated heat transfer char-

cteristics and pressure drops of a pillow plate heat exchanger

ith various nanofluids. Results showed that compared to water

t Re = 10 0 0, the thermal performance of 5 vol.% Al 2 O 3 -water

anofluid showed an improvement of 43.4%. 

In most cases, it is proved that addition of nanoparticles into

 base fluid usually improve the thermal performance of indus-

rial equipment. However, only few studies have been conducted

o compare heat transfer enhancements of various nanofluids in

eat exchangers at a large range of the mass flow rate. Generally,

here were only few types of nanofluids investigated in the plate

eat exchangers in previous studies. This paper aims to investigate

he thermal performance of various nanofluids in a plate heat ex-

hanger, including CuO-water, SiC-water, Al 2 O 3 -water and Fe 3 O 4 -

ater nanofluids. A new empirical formula with a high prediction

ccuracy is proposed based on the present experimental data. Fi-
 t  
ally, the nanofluid with the optimal heat transfer performance is

ecommended for solar energy systems. 

. Experimental investigation 

.1. Preparation of nanofluids 

The nanoparticles, i.e., Al 2 O 3 , SiC, CuO and Fe 3 O 4 , used in this

ork were purchased from the Deke Daojin Company (China) and

he scanning electron microscope (SEM) images of these nanopar-

icles are shown in Fig. 1 . This company provided information

f particle size, shape, and purity. Physical parameters of both

anoparticles and deionized water are listed in Table 1 . 

Nanoparticles were first dispersed into the DI-water by me-

hanical stirring, and then ultrasonic vibration was used to fur-

her improve the dispersible homogeneity. In order to improve

he nanofluid stability, suitable dispersants are added into the

ixed fluid with various nanoparticle mass fractions (0.05 wt.%,

.1 wt.%, 0.5 wt.% and 1.0 wt.%) as shown in Fig. 2 . Different dis-

ersants are chosen to prepare different nanofluids due to various

urface properties of the nanoparticles. Considering ultrasonication

ime and dispersant dosage, information of the nanofluid prepara-
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Table 2 

Details of nanofluid preparation. 

Nanofluid Mechanical stirring time Ultrasonication time Dispersant Mass p: Mass d 

Al 2 O 3 -water 30 min 1 h Sodium hexametaphosphate 4:1 

SiC-water 40 min 2 h Cetyltrimethylammonium bromide 5:3 

CuO-water 30 min 1.5 h Sodium hexametaphosphate 4:1 

Fe 3 O 4 -water 30 min 1 h Sodium citrate 5:1 
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Fig. 3. Zeta ( ζ ) potential distribution of nanofluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

a  

s  

r  

p  

c  

t  

5  

t  

p

 

g  

a  

i  

0  

e

tion process is shown in Table 2 . In this table, the value of Mass p :

Mass d means the mass ratio of particle and dispersant. 

Fig. 3 shows zeta ( ζ ) potential distributions for all four nanoflu-

ids with a mass fraction of 1.0 wt.%. In this research, the values

of the zeta ( ζ ) potential for the nanofluids were measured by the

Zetasizer Nano ZS90 with an accuracy of 0.12 μm 

•cm/V 

•s. Zeta

( ζ ) potential is an important index to characterize the stability

of colloidal dispersion nanofluids. For a stable fluid, the nanopar-

ticles with a lot of positive and negative charges in the liquid

will repel each other, which results in high zeta potential. For a

nanofluid, a high absolute value of the zeta ( ζ ) potential corre-

sponds to high stability of the colloidal dispersion. Usually, the col-

loidal dispersion of the nanofluid shows a better stability with a

zeta ( ζ ) potential above 25. It is found that values of the zeta ζ
potential for Al 2 O 3 -water, SiC-water, CuO-water and Fe 3 O 4 -water

nanofluids are −36.7 mV, −26.8 mV, −34.5 mV and −29.9 mV, re-

spectively. Results indicate that the prepared nanofluids have good

stability. 
.2. Experimental setup 

The present experimental setup consists of two flow loops, i.e.,

 water loop and a nanofluid loop. In Fig. 4 , the right loop repre-

ents the flowing circulation of the hot water, and the left loop

epresents the flowing circulation of the nanofluid. Thermocou-

les are arranged at the inlet and outlet of the plate heat ex-

hanger to measure the fluid temperatures. The inlet tempera-

ures of nanofluid and hot water are maintained at 27 ±1 °C and

0 ±1 °C, respectively. The pressure drop of the nanofluid through

he corrugated plate heat exchanger is measured by a differential

ressure gauge. 

Fig. 5 shows a schematic of the heat exchanger and corru-

ated plate. The length and width of the plate heat exchanger

re 170 mm and 70 mm, respectively. The plate heat exchanger

s composed of 28 corrugated plates with an average thickness of

.5 mm. Other geometrical dimensions of the corrugated plate heat

xchanger are shown in Table 3 . 
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Fig. 4. Schematic of the experimental system. 

Fig. 5. Schematic of the heat exchanger and corrugated plate. 

Table 3 

Geometrical dimensions of the corru- 

gated plate heat exchanger. 

Parameters Value 

Corrugation angle, β 60 °
Corrugation pitch, t 9 mm 

Number of corrugated plate, N 28 

Plate length, L 170 mm 

Plant width, W 70 mm 

Plate depth, 2 b c 4.8 mm 

Plate thickness, δ 0.5 mm 

Total heat transfer area, A 0.378 m 

2 

Surface enlargement ratio 1.13 

2
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.3. Data analysis 

In theory, the released heat from the hot fluid is equal to the

bsorbed heat from the cold fluid in a heat exchanger, and the

eat amount for the hot fluid and cold fluid can be calculated

y Eqs. (1) and (2) , respectively. Q ave represents the average heat
ower of the hot fluid and the cold fluid and is calculated by

q. (3) 

 h = m h C p,h ( T h,in − T h,out ) (1) 

 c = m c C p,c ( T c,out − T c,in ) (2) 

 a v e = ( Q h + Q c ) / 2 (3) 

The overall heat transfer coefficient ( U ) can be calculated by

q. (4) 

 = 

Q a v e 

A · LMT D 

(4) 

here A represents the total heat transfer area (0.378 m 

2 ). LMTD

epresents the logarithmic mean temperature difference from

q. (5) . The expression for LMTD calculation in this paper is given

n Eq. (6) : 

MT D = 

	t max − 	t min 

ln 

	t max 

	t min 

(5) 

MT D = 

( T h,out − T c,in ) − ( T h,in − T c,out ) 

ln 

( T h,out −T c,in ) 

( T h,in −T c,out ) 

(6) 

The heat transfer coefficient of the nanofluid ( h nf ) can be calcu-

ated using Eq. (7) : 

1 

U 

= 

1 

h n f 

+ 

δ

λ
+ 

1 

h w 

(7) 

here δ and λ represent the width and thermal conductivity of

he corrugated plate, respectively. h w 

is the convective heat trans-

er coefficient of the water. In this work, the heat transfer perfor-

ance of the hot water was obtained by using the following equa-

ion [31] : 

u = 1 . 615 [ ( f Re/ 64) ReP rD/L ] 
1 / 3 

(8) 

here Nu, Re , and Pr are Nusselt number, Reynolds number and

randtl number, respectively. f is related to the flow characteristics

nd structure of the corrugated plate. D is the equivalent diameter,

.e., the plate depth for this work. The Reynolds number ( Re ) and

randtl number ( Pr ) can be calculated by the following equations. 

e = 

ρυD 

μ
(9) 
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Table 4 

Typical models for predicting thermal conductivity. 

Authors Thermal conductivity Viscosity 

Maxwell [34] 
k n f 

k w 
= 

k p +2 k w +2 ϕ( k p −k w ) 

k p +2 k w −ϕ( k p −k w ) 
/ 

Bruggeman [35] ϕ( 
k p −k n f 

k p +2 k n f 
) + (1 − ϕ)( 

k f −k n f 

k f +2 k n f 
) = 0 / 

Einstein [36] / μn f = μw (1 + 2 . 5 ϕ) 

Brinkman [37] / μn f = μw (1 − 2 . 5 ϕ + 1 . 552 ϕ) −1 

Fig. 6. Comparisons between measured results and theoretical calculated values for the thermal conductivity and viscosity of 0.5 vol.% Fe 3 O 4 -water nanofluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Uncertainties of measurements. 

Measurements Uncertainty 

Temperature ± 0.1 K 

Diameter ± 0.05 mm 

Length ± 0.5 mm 

Width ± 0.5 mm 

Mass of nanoparticles ± 0.001 g 

Volume flow ± 2.5% 

Pressure drop, 	p ± 2% 

Heat flow, Q ± 1.25% 

Heat transfer coefficient, h ± 1.77% 

Reynolds number, Re ± 3.71% 

Nusselt number, Nu ± 3.59% 

t  

o  

c  

p

2

 

c  

p  

m  

a  

c

δ  

w  

a  

r  

f  
P r = 

μC p 

k 
(10)

It is obvious that the two dimensionless numbers are closely

related to the fluid physical properties, such as density ( ρ), flow

velocity ( v ), viscosity ( μ) and thermal conductivity ( k ). The Nusselt

number of the hot water can be calculated as follows: 

Nu = 

hD 

k 
(11)

Based on Eqs. (8) and (11) , the heat transfer performance of the

nanofluid was obtained. 

2.4. Thermophysical properties of the nanofluid 

In this paper, density and specific heat of the nanofluid are cal-

culated as suggested in Refs. [ 32 , 33 ]: 

ρn f = (1 − ϕ) ρw 

+ ϕ ρp (12)

(ρc p ) n f = (1 − ϕ) (ρc p ) w 

+ ϕ (ρc p ) p (13)

where ϕ represents the volume fraction of the nanofluid. The sub-

scripts nf, w and p represent nanofluid, water and particle, respec-

tively. 

The thermal conductivity was measured by the DRE-2B thermal

property analyzer (Xiangtan Instrument & Meter Ltd., China) with

an accuracy of ±3.0%, and the viscosity was measured by a brook-

field DV2T viscosimeter (Brookfield Engineering Laboratories Com-

pany, USA) with an accuracy of ±1.0%. Many classical models in

Refs. [34-37] were developed to calculate the thermal conductivity

and viscosity of nanofluids as shown in Table 4 . 

For the thermal conductivity and viscosity of the 0.5 vol.%

Fe 3 O 4 -water nanofluid, comparisons of measured results and theo-

retical calculated values have been conducted as shown in Fig. 6 . It

is found that the results from the theoretical calculations differ to

some extent from the measured values. The main reasons are that

the effects of dispersant and nanoparticle size have not been con-

sidered in these published classical models. More discussions on
hermophysical properties of nanofluids can be found in the previ-

us research [38] , and specific empirical formulas for the thermal

onductivity and viscosity of the Fe 3 O 4 -water nanofluid have been

roposed. 

.5. Analysis of uncertainties 

The heat transfer performance of the corrugated plate heat ex-

hanger filled with nanofluids is investigated by changing some

arameters, such as inlet temperature, inlet flow rate, nanoparticle

ass fraction, etc. Uncertainties of the tested and calculated values

re listed in Table 5 . An analysis of the experimental uncertainty is

onducted based on the method presented in Moffat [39] : 

R = 

{ 

N ∑ 

i =1 

(
∂R 

∂ X i 

δX i 

)2 
} 1 / 2 

(14)

here the variable R is a function of parameters X 1 , X 2 , …, X n ,

nd δX 1 , δX 2 , …δX n are corresponding uncertainties of these pa-

ameters. Uncertainties of Reynolds number, heat flow, heat trans-

er coefficient and Nusselt number can be calculated by applying
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Fig. 7. Repeatability validation of experimental results. 
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qs. (15 - 18 ): 

Re = 

√ (
	ρ

ρ

)2 

+ 

(
	μ

μ

)2 

+ 

(
	υ

υ

)2 

+ 

(
	D 

D 

)2 

(15) 

Q = 

√ (
	m 

m 

)2 

+ 

(
	C p 

C p 

)2 

+ 

(
	T 

T 

)2 

(16) 

h = 

√ (
	A 

A 

)2 

+ 

(
	Q 

Q 

)2 

+ 

(
	T 

T 

)2 

(17) 

Nu = 

√ (
	h 

h 

)2 

+ 

(
	k 

k 

)2 

+ 

(
	D 

D 

)2 

(18) 

. Results and discussion 

The heat transfer performance and pressure drop of the plate

eat exchanger with nanofluids are discussed in this section. Fi-

ally, new empirical formulas of experimental Nu values are pro-

osed. 

.1. Repeatability test 

Every measurement for the nanofluid was conducted at least

hree times to reduce errors of the experimental results. Fig. 7

hows a repeatability investigation on the experimental results

or the DI-water and 0.05 wt.% Fe 3 O 4 -water nanofluid. The max-

mum differences are 3.4% and 6.3% for DI-water and Fe 3 O 4 -water

anofluid, respectively. This result indicates that a good consis-

ency in the heat transfer coefficient is obtained during three tests.

.2. Heat transfer performance 

Heat transfer performance of the various nanofluids are de-

icted in Fig. 8 and analyzed at different volume flow rates

3 L/min, 6 L/min and 9 L/min). Compared to DI-water at a volume

ow rate of 9 L/min, the overall heat transfer coefficients increase

y 6.0%, 4.8%, 4.9% and 5.9% for the 0.5 wt.% Fe 3 O 4 -water, CuO-

ater, Al 2 O 3 -water and SiC-water nanofluids, respectively. A com-

arison of the overall heat transfer coefficients at all tested flow

ates (3 L/min, 6 L/min and 9 L/min) shows that the maximum

ncrement of 9.4% is obtained for 1.0 wt.% Al 2 O 3 -water nanofluid,

hereas the minimum increment of 0.6% is observed for 0.05 wt.%
iC-water nanofluid. Thus, it is concluded that the overall heat

ransfer coefficient increases with an increase in the volume flow

ate. This is so because the increase in the volume flow rate re-

ults in more intensive nanoparticle movements and larger veloc-

ty difference between the particle and the base fluid. In addition,

he supply of nanoparticles improves the thermal conductivity of

he base fluid, and the thermal conductivity of the nanofluid in-

reases with the increase in the nanoparticle concentration. How-

ver, even for the same nanofluid, increasing the flow rate may

ead to a reduction of the heat transfer enhancement compared to

I-water. For 0.1 wt.% Fe 3 O 4 -water nanofluid, a flow rate increase

rom 3 L/min to 6 L/min results in 2.6% reduction of heat trans-

er enhancement (from 9.3% to 6.7%). This result is because the

igh concentration will result in higher viscosity. Therefore, the ob-

erved results are obtained based on the interaction of various fac-

ors, including nanoparticle movement, thermal conductivity and

iscosity of the nanofluid. 

Fig. 9 shows the variation trends of the heat transfer coeffi-

ients of the various nanofluids at different flow rates. It is found

hat the convective heat transfer coefficient of the nanofluid is

igher than that of DI-water. Results indicate that the CuO-water

anofluid mostly shows better heat transfer performance than the

thers at a low particle concentration of 0.05 wt.%, whereas the

e 3 O 4 -water nanofluid has generally higher performance compared

o the other nanofluids at a nanoparticle particle concentration

bove 0.05 wt.%. At the same particle concentration of 1.0 wt.%,

he heat transfer coefficients for Fe 3 O 4 -water, CuO-water, Al 2 O 3 -

ater and SiC-water nanofluids on average increase by 21.9%, 11.4%,

9.8% and 15.0%, respectively. For a mass fraction of 1.0 wt.% at

 L/min, the Fe 3 O 4 -water nanofluid has the maximum increase of

0.8% of the convective heat transfer coefficient. Due to the high

ow rate, the velocity increase of the particle movement decreases

he thickness of the thermal boundary layer. These all contribute to

he increase in the heat transfer performance of the plate heat ex-

hanger. Based on the discussions of Figs. 8-9 , it is concluded that

he Fe 3 O 4 -water with higher than 0.05 wt.% mass fraction should

e recommended for a good heat transfer performance of a plate

eat exchanger. 

.3. Pressure drop ( 	p ) 

Fig. 10 shows the relationship between the pressure drop and

he volume flow rate for the four nanofluids with the optimum

oncentrations (1.0 wt.% Al O -water, 0.5 wt.% SiC-water, 0.5 wt.%
2 3 
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Fig. 8. Overall heat transfer coefficients versus volume flow rate. 
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CuO-water, and 1.0 wt.% Fe 3 O 4 -water nanofluids). It is found that

the pressure drop of all the four nanofluids are higher than that of

DI-water, and the pressure drop increases with the inlet flow rate.

A high particle concentration is likely to promote aggregation and

sedimentation of particles. These all cause an increase in the pres-

sure drop. Compared with DI-water, the average pressure drops

for the 0.5 wt.% SiC-water and 0.5 wt.% CuO-water nanofluids in-

crease by 7.2% and 9.5%, respectively. The 1.0 wt.% Al 2 O 3 -water and

Fe 3 O 4 -water nanofluids show somewhat larger pressure drops than

the other 0.5% nanofluids. 

For these nanofluids, Fig. 11 further investigates the relation-

ship between the heat transfer coefficient and the needed pump-

ing power. The pumping power ( P p ) is calculated by: 

P p = 	pV (19)

where V is the volume flow rate of the working fluid. It is found

that the 1.0 wt.% Al 2 O 3 -water nanofluid shows the best heat trans-

fer performance at a small pumping power (nearly below 0.4),

whereas the 1.0 wt.% Fe 3 O 4 -water nanofluid shows the best per-

formance at a high pumping power (nearly above 0.5). This re-

sult indicates that the nanofluid with the best heat transfer per-

formance should be chosen according to the working conditions in

heat transfer systems. 

3.4. Empirical formulas 

For different nanofluids, the Reynolds number at a given flow

rate is different due to the differences in physical properties. In

this work, the Reynolds number is calculated by the volume flow

rate, dimension of the channel, and physical properties of the
eat transfer fluids. Usually, the HTC for fluids in plate heat ex-

hanger can be predicted by the Nusselt number (as a function of

randtl number and Reynolds number), which is expressed as fol-

ows: 

u = CR e m P r n (20)

Based on the determination method of the index n in Huang

t al. [28] , the value of n is classified as a constant of 0.3. The

alues of C and m are determined by the experimental data.

q. (21) can be transformed as 

g 
Nu 

P r 0 . 3 
= lg C + m lg Re (21)

For a nanofluid with a certain concentration, the value of the

randtl number is a constant. The empirical formula of cold water

owing in the heat exchanger is as follows: 

u = 0 . 372 R e 0 . 687 P r 0 . 3 (22)

here the ranges of the Re and Pr are 10 0–60 0 and 5–7, respec-

ively. For the 0.05 wt.% Fe 3 O 4 -water nanofluid, other Nu empiri-

al correlations for plate heat exchangers (Huang et al. [28] , Bhat-

ad et al. [29] and Maré et al. [40] ) are also shown and listed in

able 6 . 

Comparisons of experimental and calculated Nu values have

een conducted and are shown in Fig. 12 . The empirical formula

s proposed based on experimental data of water, which was ex-

mined using the 0.05 wt.% Fe 3 O 4 -water nanofluid. From Fig. 10 ,

t is found that the empirical correlation proposed in this work

rovides predictions agreeing well with experimental results. The

aximum error between experimental data and theoretical cal-
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Fig. 9. Heat transfer coefficients of nanofluids for different particle concentrations. 

Fig. 10. Pressure drops of various nanofluids. 

c  

g  

m  

c  

f  

M  

r  

d  

Fig. 11. Heat transfer coefficient of nanofluid with pumping power. 

Table 6 

Existing heat transfer correlations used in plate 

heat exchangers. 

Authors Correlations 

This study Nu = 0.372 Re 0.687 Pr 0.3 

Huang et al. [28] Nu = 0.3762 Re 0.6681 Pr 0.4 

Bhattad et al. [29] Nu = 0.358 Re 0.57 Pr 0.3 

Maré et al. [40] Nu = 0.455 Re 0.66 Pr 1/3 
ulations is 9.5% at the flow rate of 3 L/min. The average mar-

in of the errors is 2.8% in the whole flow range. If the maxi-

um error at 3 L/min is not considered, the average error de-

reases to 1.7%. It is found that the deviations are 6.2% and 9.3%

rom the empirical correlations proposed by Huang et al. [28] and

aré et al. [40] , respectively. However, by using the empirical cor-

elation proposed by Bhattad et al. [29] , the Nu values show great

eviations from the experimental values. Different dimensions of
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Fig. 12. Comparison between theoretical and experimental Nu values for the Fe 3 O 4 
nanofluid. 
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plate heat exchangers may cause a difference in the empirical cor-

relations, such as different corrugation angle, corrugation pitch,

plate depth, etc. 

4. Conclusions 

This paper investigated heat transfer performance and flow

characteristics of various nanofluids in a corrugated plate heat ex-

changer used in solar energy systems. Comparisons of heat transfer

enhancements of CuO-water, SiC-water, Al 2 O 3 -water and Fe 3 O 4 -

water nanofluids were conducted at mass flow rates in the range

of 3–9 L/min. The main conclusions are as follows: 

(1) Compared with DI-water, four nanofluids significantly im-

prove the heat transfer performance of the plate heat ex-

changer. The Fe 3 O 4 -water nanofluid at mass fractions above

0.05 wt.% shows higher performance than the other nanoflu-

ids. By using 1.0 wt.% Fe 3 O 4 -water nanofluid as the work-

ing fluid, the heat transfer coefficient increases by 30.8% at

8 L/min compared to DI-water. 

(2) The pressure drops between the inlet and outlet of the plate

heat exchanger were investigated for four nanofluids at the

optimum particle concentration. For a given pumping power,

the 1.0 wt.% Al 2 O 3 -water and Fe 3 O 4 -water nanofluids show

higher pressure drop than the other 0.5 wt.% nanofluids es-

pecially at high volume flow rates. 

(3) The empirical formula of the Nusselt numbers for the tested

plate heat exchanger is summarized based on the experi-

mental data. The empirical formula can also provide a ref-

erence for application of nanofluids in various heat trans-

fer systems. It is concluded that Fe 3 O 4 -water nanofluid is a

promising medium to enhance the thermal performance of

heat transfer systems compared to the other tested nanoflu-

ids. 
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