Slitine s prisjetljivosti oblika (II. dio): podjela, proizvodnja i primjena

Ivanić, Ivana; Gojić, Mirko; Kožuh, Stjepan

Source / Izvornik: Kemija u industriji : Časopis kemičara i kemijskih inženjera Hrvatske, 2014, 63, 331 - 344

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.15255/KUI.2013.017

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:115:400681

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of Faculty of Metallurgy University of Zagreb - Repository of Faculty of Metallurgy University of Zagreb

Slitine s prisjetljivosti oblika (II. dio): podjela, proizvodnja i primjena

DOI: 10.15255/KUI.2013.017 KUI-22/2014 Pregledni rad Prispjelo 29. srpnja 2013. Prihvaćeno 29. studenoga 2013.

I. Ivanić,* M. Gojić i S. Kožuh

Metalurški fakultet, Sveučilište u Zagrebu, Aleja narodnih heroja 3, 44 103 Sisak, Hrvatska

Slitine s prisjetljivosti oblika funkcionalni su "pametni" materijali s jedinstvenim svojstvom prisjetljivosti oblika. Prisjetljivosti oblika karakteristična je sposobnost materijala koja je posljedica martenzitne fazne transformacije, a karakterizira je vraćanje slitine u oblik koji je imala prije deformacije. U radu su detaljno objašnjene slitine s prisjetljivosti oblika s gledišta njihove podjele, proizvodnje i primjene. U industrijskoj primjeni najčešće se upotrebljavaju slitine na bazi nikla i titanija, te slitine na bazi bakra. Slitine na bazi željeza i plemenitih metala još uvijek nemaju značajniju industrijsku primjenu. Slitine s prisjetljivosti oblika uglavnom se proizvode postupcima indukcijskog taljenja, brzog očvršćivanja (primjerice *melt spinning*) i kontinuiranog lijevanja.

Ključne riječi: "Pametni" materijali, NiTi, Cu-slitine, brzo očvršćivanje

Uvod

Termin slitine s prisjetljivosti oblika (SMA) primjenjuje se na skupinu metalnih materijala koji pri određenom postupku toplinske obrade pokazuju sposobnost vraćanja u njihovo prethodno definirano stanje ili oblik. Navedeni materijali mogu se plastično deformirati na relativno niskim temperaturama te se nakon izloženosti višim temperaturama vraćaju u oblik prije deformacije. Promjena oblika posljedica je austenitno-martenzitne transformacije u strukturi slitine. Austenitno-martenzitna transformacija okarakterizirana je temperaturama početka i završetka austenitne transformacije (A_s i A_i) te temperaturama početka i završetka martenzitne transformacije (M_s i M_f).

Efekt prisjetljivosti oblika uočio je švedski istraživač Ölander 1932. godine, na slitini zlata i kadmija, kod koje se pokazalo da martenzitna faza može poprimiti oblik koji se s promjenom temperature mijenja. Veća pažnja počela se posvećivati ovoj pojavi kada su Buehler i suradnici otkrili efekt prisjetljivosti oblika u slitini nikla i titanija.^{1–7}

Nedugo nakon toga dolazi do većeg zanimanja za istraživanja navedenih slitina. Postoji velik broj slitina koje posjeduju prisjetljivost oblika:

- slitine na bazi nikla: NiTi (tzv. nitinol), NiMnGa

slitine na bazi bakra: Cu-Zn-X (X = Al, Si, Sn, Ga, Mn),
 Cu-Al-X (X = Ni, Be, Zn, Mn), Cu-Zn-Al-X (X = Ni, Mn)

 slitine na bazi željeza: Fe-Mn, FePt, FeMnSi, FeCoNiTi itd.
 slitine na bazi plemenitih metala: AuCd, AuAg, PtAl, PtTi, PtGa

tzv. "egzotične" slitine: InTe, InCd, VNb.⁸

Slitina NiTi, kao najpoznatija slitina s prisjetljivosti oblika, ima široku primjenu u strojarskoj industriji, elektroničkoj industriji, astronautičkoj industriji i medicini zbog povoljnih termomehaničkih i termoelektričnih svojstava te biokompatibilnosti.^{2,9,10}

Slitine na bazi bakra komercijalno su privlačne za primjenu ponajprije kao zamjena za skupe slitine NiTi u nemedicinskim uvjetima primjene.¹¹ Međutim ograničavajući faktori za industrijsku primjenu slitine s prisjetljivosti oblika na bazi bakra su niska toplinska stabilnost, krhkost i nezadovoljavajuća čvrstoća.¹²

Osnovna prednost slitina CuAlNi pred ostalim slitinama s prisjetljivosti oblika je niska cijena te mogućnost primjene na višim temperaturama (do 200 °C). S druge strane, njena praktična primjena je ograničena zbog teške obradljivosti i sklonosti krhkom lomu na granici zrna.^{12–17} Međutim postoji niz prednosti slitine CuAlNi u odnosu na slitinu NiTi s prisjetljivosti oblika: lakše taljenje, lijevanje i kontrola kemijskog sastava, veći Youngov modul elastičnost, viša radna temperatura i, što je najvažnije, veća stabilnost dvosmjernog efekta prisjetljivosti oblika.^{9,13,18}

Cilj rada je pregledno prikazati najčešće upotrebljavane slitine s prisjetljivosti oblika, postupke proizvodnje te svojstva i primjenu navedenih materijala.

Slitine s prisjetljivosti oblika

Slitina NiTi (nitinol)

Šezdesetih godina 20. stoljeća Buechler i suradnici otkrili su efekt prisjetljivosti oblika na slitini nikal-titanij (NiTi) u laboratoriju (Naval Ordnance Laboratory) prema kojem je slitina dobila ime NiTiNOL.^{1,2,4,5} Najpoznatija slitina NiTi je Ni₅₀Ti₅₀.⁶ Temperature faznih transformacija slitine NiTi značajno ovise o kemijskom sastavu, pogotovo sadržaju nikla u slitini, te uglavnom iznose od -40 °C do +100 °C.¹⁶

Fazni dijagrami su vrlo važni za razumijevanje mikrostrukture slitina s prisjetljivosti oblika. Pomoću faznog dijagrama

^{*} Autor za dopisivanje: Ivana Ivanić, mag. ing. met.

e-pošta: iivanic@simet.hr

moguće je odrediti stabilnost određenih faza. Slika 1 predstavlja fazni dijagram slitine NiTi s prisjetljivosti oblika. Visokotemperaturna austenitna faza ima kubičnu strukturu B2. Faza TiNi s tipom strukture B2 nastaje sporim hlađenjem na sobnu temperaturu. U faznom dijagramu značajan je središnji dio između faza Ti₂Ni i TiNi₃. Faza Ti₂Ni je kubične strukure, dok faza TiNi₃ ima heksagonsku strukturu D0₂₄. Brzim hlađenjem slitina se transformira u martenzit. Niskotemperaturna martenzitna faza je monoklinske strukture B19'. Fazni dijagram još uvijek je predmet brojnih rasprava zbog prisutnosti ili odsutnosti eutektoidnog raspada TiNi \rightarrow Ti₂Ni₃ \rightarrow TiNi₃ na temperaturi 630 °C.^{6,7,19}

S I i k a 1 – Fazni dijagram slitine NiTi s prisjetljivosti oblika⁶ F i g . 1 – Phase diagram of NiTi shape memory alloy⁶

Važna činjenica za slitinu NiTi je i povoljan Youngov modul elastičnosti koji je znatno veći od Youngova modula ljudske kosti, međutim manji od mnogih ostalih slitina.²⁰ Na slici 2 je shematski prikazana usporedba krivulja naprezanje – deformacija za nehrđajući čelik, slitine NiTi i kost. Iz slike 2 se vidi da je vrlo slično ponašanje slitine NiTi i kosti.²¹

Oporavak istezanja nakon deformacije polikristalne slitine NiTi je do 8 % za jednosmjerni efekt prisjetljivosti oblika, dok za dvosmjerni efekt iznosi 4 %.²² Da bi slitina postigla svojstva efekta prisjetljivosti oblika, u posljednjem postupku procesa izrade mora se hladno obrađivati, nakon čega slijedi pravilan postupak toplinske obrade.¹⁶

Proizvodnja slitine NiTi iznimno je zahtjevna ponajprije zbog oksidacije titanija, loše obradljivosti slitine i skupih sirovina.²³ Isto tako, s obzirom na značajan udjel nikla u slitini, ioni nikla nepovoljno utječu na biokompatibilnost slitine zbog visokog alergenskog i karcinogenog djelovanja na ljudski organizam. Stoga, iznimno bitno svojstvo slitine NiTi s prisjetljivosti oblika je korozijska otpornost, ponajprije u slučaju implantacije u ljudski organizam. Slitine NiTi su relativno stabilne, kontinuirano i visoko pokrivene zaštitnim oksidnim slojem koji se sastoji od TiO₂ na vanjskoj površini, što sprječava koroziju slitine. Nastanak filma TiO₂ spontan je pri izlaganju slitine zraku i/ili vlagi, jer je titanij jako reaktivan i ima velik afinitet prema kisiku. Međutim pasivni film na slitini nije potpuno stabilan u uvjetima u kojima se primjenjuje. Ugradbom materijala u tijelo, elektrokemijske reakcije mogu dovesti do nastanka produkata koji mogu biti toksični za okolno tkivo. Korozija metalnih materijala u ljudskom tijelu uzrokuje otpuštanje metalnih iona dulje vrijeme te se korozijski produkti mogu kombinirati s proteinima i enzimima. Ljudsko tkivo sadrži vodu, otopljeni kisik, proteine i razne ione kao i kloride i hidrokside, koji svakako predstavljaju agresivno okruženje za materijale koji se upotrebljavaju kao implantati.^{19,24}

Slika 2 – Shematski prikaz krivulje naprezanje – deformacija za nehrđajući čelik, NiTi i kost²¹

Fig. 2 – Schematic illustration stress – strain curves of stainless steel, NiTi and bone²¹

Kako bi se što bolje kontrolirala mogućnost otpuštanja iona nikla koji su potencijalno štetni za ljudsko tkivo, razvijeno je nekoliko metoda modifikacije površine.²⁰ Osim ostalog to su: površinske prevlake, ionska implantacija, plazmatska implantacija, CVD (*chemical vapor deposition*, kemijsko taloženje iz parne faze), itd. koje su utjecale na poboljšanje biokompatibilnosti.²⁵

Dodatak legirajućih elemenata, primjerice željeza, sprječava nastajanje R-faze, koja prethodi martenzitnoj faznoj transformaciji kod slitine NiTi i koju karakterizira brz porast električne otpornosti i toplinske promjene. Dodatkom niobija u vrlo malim količinama odgađa se povratna fazna transformacija i efekt prisjetljivosti oblika na više temperature. Također, zamjenom sadržaja nikla s paladijem (oko 20 %) dobiva se slitina pogodna za visokotemperaturnu primjenu (200 – 300 °C).¹⁶

Nitinol kao najpoznatija slitina s prisjetljivosti oblika posjeduje superiorna termomehanička i termoelektrična svojstva i najčešće je upotrebljavana slitina s prisjetljivosti oblika. Posebno je značajna zbog svojih dobrih mehaničkih svojstava i biokompatibilnosti. Stoga joj je i najčešća primjena biomedicinskog karaktera (implantati).^{20,23,26}

Slitine s prisjetljivosti oblika na bazi bakra

Slitine s prisjetljivosti oblika na bazi bakra karakterizira visokotemperaturno stabilna β -faza, s povišenim temperaturama martenzitne fazne transformacije (ponajprije temperature početka nastanka martenzita, M_s) iznad 100 °C. Temperatura M_s ima tendenciju porasta s porastom sadržaja aluminija. Dodatak male količine srebra slitini Cu-Al povećava tvrdoću slitine i poboljšava otpornost na naponsku koroziju. Malim dodatkom berilija u slitinu CuAl blizu eutektoidnog sastava dolazi do stabilizacije β -faze i snižavanja M_s , dok se sama priroda martenzitne transformacije ne mijenja. Slitine s dodatkom berilija korisne su za primjenu u seizmički otpornim konstrukcijama zbog sposobnosti razvijanja velikog nelinearnog oporavka istezanja pri mehaničkom opterećenju i rasterećenju što je povezano s nastankom naprezanjem induciranog martenzita.^{27,28} Komercijalno dostupne slitine s prisjetljivosti oblika na bazi bakra su CuZnAl i CuAlNi te njihove četverokomponentne inačice.^{1,29,30}

Slitine CuZnAl s prisjetljivosti oblika

Slitina CuZnAl je druga komercijalno primijenjena slitina s prisjetljivosti oblika, odmah nakon NiTi. U usporedbi sa slitinom NiTi, slitina CuAlZn je jednostavnija i jeftinija za proizvodnju, ima bolju električnu i toplinsku provodnost te veću duktilnost. Međutim slitina CuZnAl ima znatno inferiornija svojstva prisjetljivosti oblika.³¹

Slitine CuZnAl s prisjetljivosti oblika pokazuju značajan efekt prisjetljivosti oblika u određenom području kemijskog sastava. Slitina ima β -faznu prostorno centriranu kubičnu strukturu, bcc, koja je stabilna na visokim temperaturama. Uobičajeni postupak je da se slitina toplinski obrađuje (beta-tizacija) kako bi se zadržala β -faza. Nakon betatizacije slijedi hlađenje u vodi kako bi se β -faza transformirala u martenzit.³² Slitine CuZnAl imaju vrlo veliku tendenciju raspada na ravnotežne faze tijekom pregrijavanja pa je potrebna stabilizacija martenzita.

Slika 3 prikazuje ravnotežni fazni dijagram slitine CuZnAl pri vertikalnom presjeku pri w(AI) = 6 %. Visokotemperaturna β -faza je neuređene strukture bcc. Nakon brzog hlađenja na sobnu temperaturu nastaje složena struktura B2 i D0₃ (ili L2₁) koja se zatim transformira u martenzit 9R (6M) ili 18R (6M) daljnjim hlađenjem ili bez njega, ovisno o sastavu slitine. Povećanjem sadržaja aluminija β -faza je podložna raspadu na α -fazu (primarnu čvrstu otopinu Cu, fcc) i γ -fazu (Cu₅Zn₈, kubična struktura) pri 427 °C.^{6,7,19}

Slika 3 – Ternarni dijagram CuZnAl slitine – vertikalni presjek kod 6 mas. % Al⁶

Fig. 3 – Ternary diagram of CuZnAI alloy – vertical cross-section at 6 wt.% Al⁶

Prisutnost dodataka poput kobalta, cirkonija, bora ili titanija nužna je za dobivanje zrna od 50 do 100 μ m. Bor se dodaje kako bi se poboljšala duktilnost slitine s prisjetljivosti oblika.³³

CuAlNi slitine s prisjetljivosti oblika

Slitine CuAlNi upotrebljavaju se zbog niže cijene i lakše proizvodnje u odnosu na slitinu NiTi.³⁴ Taljenje se najčešće provodi u vakuumskim indukcijskim pećima uz zaštitnu atmosferu inertnog plina, kako bi se spriječila oksidacija aluminija, dok se postupci metalurgije praha i tehnologije brzog očvršćivanja primjenjuju za proizvodnju sitnozrnatih slitina bez upotrebe elemenata koji služe za usitnjavanje zrna.^{1,35,36}

Polikristalne slitine CuAlNi proizvedene konvencionalnim putem vrlo su krhke, što je povezano s velikom elastičnom anizotropijom i krupnozrnatom mikrostrukturom. Anizotropija martenzitne transformacije ima izravne posljedice na makroskopsko ponašanje polikristala. Polikristali imaju nizak stupanj oporavka oblika zbog nasumično distribuirane orijentacije te je pseudoelastični efekt ograničen na 2 %, što je premala vrijednost za praktičnu upotrebu.³⁷

Bolja kontrola kemijskog sastava i sitnozrnata mikrostruktura nakon lijevanja mogu se dobiti proizvodnjom slitina postupcima brzog očvršćivanja te metalurgijom praha i procesima mehaničkog legiranja. Međutim navedene metode još uvijek nemaju sustavne i pogodne uvjete proizvodnje za dobivanje zadovoljavajućeg efekta prisjetljivosti oblika.^{35,38}

Temperatura M_s slitina s prisjetljivosti oblika iznimno je ovisna o kemijskom sastavu. Međutim isto tako i svojstva poput pseudoelastičnosti i efekta prisjetljivosti oblika ovise o kemijskom sastavu. Stoga se navedena svojstva i temperature faznih transformacija mogu prilagođavati promjenom kemijskog sastava. S obzirom na to da slitine na bazi bakra imaju veliko zrno, dodaju se određeni elementi poput titanija, bora, cirkonija kako bi spriječili rast zrna. Za slitinu CuAlNi najčešći je mikrolegirajući element titanij, koji stvara precipitate χ -faze ((Cu,Ni)₂TiAl) koji sprječavaju porast zrna.^{1,29,30} Mangan se kao legirajući element dodaje zbog povećanja duktilnosti slitina CuAlNi, te je odgovoran za nastanak β -faznog područja i poboljšanje termomehaničkih svojstva slitina s prisjetljivosti oblika.^{1,16,35}

Praktična primjena slitina CuAlNi ograničena je zbog slabe obradivosti i krhkosti (intergranularni lom). Visoka elastična anizotropija i precipitacija krhke γ₂-faze (Cu₉Al₄) proizlazi iz hipereutektoidnog sastava slitine i povećanja zrna kada je slitina otapajuće žarena na visokim temperaturama u β-faznom području. Rezultat je žarenja smanjenje duktilnosti i obradivosti slitina.^{13,29} Područje β-faze uvelike ovisi o kemijskom sastavu slitine na što veliki utjecaj ima omjer broja elektrona i atoma (N_e/N_a). β-fazno područje je najstabilnije kada je N_e/N_a = 1,48. Kod slitina CuAlNi omjer N_e/N_a uvijek je >1,48 (3 – 5 % Ni, 11 – 14 % Al), pa se precipitacija vrlo krhke γ₂-faze ne može izbjeći.¹⁶

Porast zrna i prisutnost krhke γ_2 -faze u polikristalnoj slitini CuAlNi uzrokuje krhkost i povećava sklonost prema intergranularnom lomu tijekom obrade. Dodatak legirajućih elemenata, kao npr. mangana u udjelu 2 %, zamjenjujući dio aluminija, otežava eutektoidnu reakciju $\beta_1 \rightarrow \alpha + \gamma_2$ uz održavanje potrebnih transformacijskih temperatura. Titanij u udjelu od 1 % utječe na smanjenje veličine zrna i smanjuje intergranularni lom.³⁹

Nikal u ternarnoj slitini omogućuje usporavanje difuzije bakra i aluminija, stoga tijekom hlađenja dolazi do zadržavanja jednofaznih uvjeta dok se ne dosegne temperatura $M_{\rm s}$. Povećanjem sadržaja nikla povećava se krhkost slitine i eutektoidna se točka pomiče prema većem udjelu aluminija. Povećavanjem sadržaja aluminija povećava se stabilnost martenzita, međutim snizuje se temperatura faznih transformacija. Stoga je optimalan sastav slitine s masenim udjelima $w({\rm Cu}) = 11 - 14$ % i $w({\rm Al}) = 3 - 4,5.$ ¹⁶

Slitine CuAlNi imaju bolju toplinsku stabilnost i više radne temperature od drugih slitina s prisjetljivosti oblika.^{29,35} Karakteristične temperature martenzitnih transformacija su od -200 do 200 °C i ovise o udjelu aluminija i nikla, pri čemu je mnogo utjecajniji udjel aluminija.^{23,40}

Pojava toplinski induciranog martenzita isključivo ovisi o kemijskom sastavu. Martenzit induciran naprezanjem, odnosno deformacijom, ovisi isključivo o kristalografskoj orijentaciji, ispitnoj temperaturi i tipu naprezanja.⁴¹ Proces stabilizacije svodi se na homogenizacijsko žarenje u β -faznom području i nužan je kako bi se inducirala reverzibilna martenzitna transformacija.^{40,42,43}

Kod slitina CuAlNi s prisjetljivosti oblika iz početne austenitne β -faze nastaju dva tipa toplinski induciranog martenzita 18R (β_1) i 2H (γ_1), što ovisi o kemijskom sastavu slitine, toplinskoj obradi i uvjetima naprezanja. Kod slitina s niskim sadržajem aluminija (w = 11 - 13 %) hlađenjem nastaje martenzit 18R. Viši sadržaj aluminija (w > 13 %) prati formiranje martenzita 2H. Ako je kemijski sastav takav da je na granici između nastanka obaju martenzita, tada oba mogu postojati u mikrostrukturi. S druge strane, ovi martenziti pokazuju različite transformacijske karakteristike.^{40,44-49}

Slika 4a prikazuje fazni dijagram slitine CuAlNi pri vertikalnom presjeku kod 3 % Ni,^{6,19,40} a na slici 4b prikazan je fazni dijagram slitine CuAlNi pri vertikalnom presjeku kod 14% Al.⁵⁰ Faze koje se pojavljuju u dijagramima (slika 4a i 4b) i njihovo objašnjenje nalaze se u tablici 1.

Fablica	 Faze prisutne u ravnotežnim dijagramima slitine
	CuAlNi prikazanim na slici 450

Table	1	 Phases present in equilibrium diagrams of CuAlNi
		alloys as shown in Fig. 4 ⁵⁰

	,
Faza Phase	Opis Description
α	primarna čvrsta otopina Al i Ni u bakru, struktura fcc primary solid solution of Al and Ni in cooper, fcc crystal structure
β	visokotemperaturna neuređena faza bazirana na Cu ₃ Al, struktura bcc high-temperature disordered phase based on Cu ₃ Al, bcc crystal structure
β_1	niskotemperaturna neuređena faza bazirana na Cu ₃ Al, struktura D0 ₃ low-temperature disordered phase based on Cu ₃ Al, D0 ₃ structure
γ_2	kompleksna faza Cu ₉ Al ₄ , kubična struktura complex phase Cu ₉ Al ₄ , cubic crystal structure
martenzit martensite	uređena faza ortorombske strukture ordered phase orthorhombic structure
NiAl	uređena faza, struktura bcc ordered phase, bcc structure

U ravnotežnom stanju pri temperaturi 565 °C i 11,8 % aluminija β -faza s prostorno centriranom kubičnom rešetkom (bcc) raspada se na α -fazu (primarna čvrsta otopina aluminija i nikla u bakru, struktura fcc) i γ_2 -fazu. Krhke faze kao što su γ_2 -faza (kubična intermetalna faza Cu₉Al₄) i NiAl (struktura bcc) počinju precipitirati ispod eutektoidne temperature. Brzim hlađenjem iz β -faznog područja eutektoidni raspad je zaustavljen i odvija se martenzitna transformacija.^{19,40,44} Očvršćivanje kontinuirano lijevane slitine CuAlNi, s w(Cu) = 13,16 % i w(Al) = 4,11 %, prikazano je na slici 5, gdje je vidljiva prisutnost sitnozrnate strukture uz rub štapa,

S I i k a 4 – Ternarni fazni dijagrami slitine CuAlNi vertikalni presjek pri w(Ni) = 3 % (a)⁶ i vertikalni presjek pri w(Al) = 14 % (b)⁵⁰ F i g . 4 – Ternary phase diagrams of CuAlNi alloy vertical cross-section at w(Ni) = 3 % (a)⁶ and vertical cross-section at w(Al) = 14 % (b)⁵⁰

Slika 5 – Poprečni (a) i uzdužni (b) presjek štapa CuAlNi slitine nakon kontinuiranog lijevanja⁵¹

Fig. 5 – Lateral (a) and longitudinal (b) cross section of CuAlNi alloy bar after continuous casting⁵¹

stubičasta zrna kao posljedica usmjerenog očvršćivanja te istoosna zrna u središnjem dijelu štapa. Martenzitna mikrostruktura prikazana je na slikama 6a i 6b. Vidljivo je da se mikrostruktura sastoji od spontano nastalog martenzita igličastog oblika. Prosječna veličina zrna kontinuirano lijevane slitine CuAlNi s w(Cu) = 13,16 % i w(Al) = 4,11 % iznosila je 98,78 µm.⁵¹

Slitina CuAlNi se teško plastično deformira kretanjem dislokacija.⁵² Zbog loše hladne obradljivosti na ovim slitinama provodi se međužarenje na temperaturama iznad 800 °C, tj. u β -faznom području.^{37,40}

Efekt prisjetljivosti oblika u slitinama CuAlNi podložan je starenju nakon kaljenja.⁹ Stoga je potrebno prilagoditi i stabilizirati temperaturu martenzitne transformacije, optimizirati toplinsku stabilnost i mehanička svojstva.⁵³ Starenje nakon zakaljivanja potrebno je provoditi iznad temperature *A_i*, kako bi se utvrdile temperature faznih transformacija. Toplinska stabilnost slitina bakra s prisjetljivosti oblika ograničena je brzinom raspada martenzita, stoga treba izbjegavati duže držanje slitina na temperaturama iznad 150 – 200 °C. Starenje na nižim temperaturama može pomaknuti temperature faznih transformacija.¹ Gornja granica za transformaciju je 200 °C, iznad koje slijedi nagla degradacija u transformaciji zbog efekta starenja. Slitine CuAlNi podložne su niskotempera-

Fig. 6 – SEM micrographs of the CuAINi shape memory alloy at different magnifications⁵¹

turnom efektu starenja koji značajno može mijenjati njihovo transformacijsko ponašanje.⁴⁵ Starenje martenzita smanjuje efekt prisjetljivosti oblika i pseudoelastičnost.³⁹

Slitine bakra s prisjetljivosti oblika mogu se vruće obrađivati na zraku, a zbog iznimne krhkosti pri niskim temperaturama neizbježan je postupak vruće deformacije. Slitine CuAlNi metastabilne su i stoga se provodi otapajuće žarenje u betafaznom području i kontrolirano hlađenje, što je potrebno za zadržavanje efekta prisjetljivosti oblika. Kaljenje u vodi često se upotrebljava kao proces kaljenja, ali se također može provoditi i hlađenje na zraku kod slitina s povećanim sadržajem aluminija.^{1,5}

Svojstva prisjetljivosti oblika slitine CuAlNi temelje se na svojstvima binarne β -faze CuAl. Tijekom hlađenja ova faza

prolazi eutektoidni raspad $\beta \rightarrow \alpha + \gamma_2$ pri 565 °C. Međutim velike brzine hlađenja mogu spriječiti raspad i omogućiti martenzitnu transformaciju.^{22,40}

Najveći nedostatak slitine CuAlNi je mali stupanj reverzibilnosti nakon deformacije (4 % za jednosmjerni efekt prisjetljivosti oblika i oko 1,5 % za dvosmjerni) kao posljedica intergranularnog loma pri niskom intenzitetu naprezanja.^{9,40}

Sklonost slitine CuAlNi prema intergranularnom lomu tijekom plastične deformacije povezana je s prisutnošću vrlo krhke γ_2 -faze. Raspored, količina, veličina i oblik γ_2 -faze dobivene u određenim uvjetima imaju značajan utjecaj na mehanička svojstva slitine CuAlNi s prisjetljivosti oblika. Z. Wang et al.¹³ su proučavali razvoj γ_2 -faze kontinuirano lijevane žice slitine CuAlNi s w(Cu) = 14 % i w(Ni) = 3,8 % prije i poslije toplinske obrade. Zaključili su da se udjel γ_2 -faze smanjuje s povećanjem temperature toplinske obrade i to 50,0 % γ₂-faze na 700 °C, 29,2 % na 730 °C, 16,6 % na 750 °C, 11,4 % na 760 °C, 0,8 % na 770 °C i potpuni raspad na 780 °C. Također su zamijetili da s povećanjem temperature toplinske obrade dolazi do promjene u morfologiji γ_2 -faze raspadom dendritne mikrostrukture u elipsasti oblik $(2 - 5 \mu m)$ i poligonalni oblik $(5 - 9 \mu m)$. S daljnjim povišenjem temperature γ_2 -faza poprima sferni oblik (2 – 4 µm). Ispitivanjem mehaničkih svojstava slitine uočili su da toplinski obrađena slitina ima bolju plastičnost, ali nisku vlačnu čvrstoću u odnosu na lijevano stanje, slika 7.

Slika 7 – Utjecaj temperature toplinske obrade na mehanička svojstva slitine CuAlNi ¹⁸

Fig. 7 – Influence of heat treatment temperature on mechanical properties of CuAlNi alloy¹⁸

Parametar rešetke γ_2 -faze je 0,856 nm, što je tri puta dulje od prisutnih čestica faze NiAl u slitini CuAlNi. S obzirom na to da γ_2 -faza uzrokuje krhkost slitine, ona je i ograničavajući faktor za održavanje termoelastičnih svojstava.⁵⁴

Mjerenje tvrdoće slitine CuAlNi s različitim udjelom nikla (4 – 7 %) pokazalo je da kod slitine s udjelom nikla 4 % tvrdoća s trajanjem starenja opada, dok kod slitina s udjelom nikla 5,5 i 7,0 % tvrdoća sa starenjem raste. Maksimalna vrijednost tvrdoće postigne se nakon 10³ sekundi za slitinu s 5,5 % Ni odnosno nakon 10⁴ sekundi za slitinu sa 7,0 % Ni. Produljenje opada nakon što su tvrdoća i čvrstoća dosegnule maksimalnu vrijednost.⁵⁵

Zarubova et al.⁵⁶ ispitivali su utjecaj starenja na martenzitnu transformaciju slitine CuAlNi s w(Cu) = 14,3 % i w(Ni) = 4,1 %. Promjena temperatura faznih transformacija slitine u ovisnosti o temperaturi starenja prikazana je na slici 8.

- Slika 8 Promjena temperatura faznih transformacija slitine CuAlNi u ovisnosti o temperaturi starenja (M_s i M_f – početak i završetak martenzitne transformacije, A_s i A_f – početak i završetak austenitne transformacije)⁵⁶
- F i g . 8 Change of phase transformation temperatures of Cu-AlNi alloy depending on ageing temperature (M_s and M_f – martensite start and finish temperature, A_s and A_f – austenite start and finish temperature)⁵⁶

Poslije 30 min starenja na temperaturi do 200 °C nema promjene u temperaturama faznih transformacija. Pri višim temperaturama starenja zabilježen je linearni porast svih temperatura transformacije. Nakon 300 °C temperature M_s i M_f se smanjuju, a temperatura A_f raste.⁵⁶

Svojstvo prigušenja vibracija ili pretvaranje mehaničke energije u toplinu nije karakteristično ponašanje koje je specifično samo za slitine s prisjetljivosti oblika. Navedeno svojstvo ovisi o martenzitnoj transformaciji i međufaznoj površini između austenita i martenzita te različitim varijantama martenzita. Moguća su tri načina prigušenja u slitinama s prisjetljivosti oblika:

– mala mogućnost prigušenja – ako je slitina u početnoj austenitnoj fazi, tj. temperatura slitine je iznad temperature M_s , a udjel naprezanja u slitini je nizak

 na temperaturama ispod M_f – sposobnost prigušenja raste nastajanjem većeg broja međufaznih slojeva u martenzitnoj fazi

– sposobnost prigušenja vibracija doseže svoj maksimum ako je slitina na temperaturi iznad A_s , te je prisutno dovoljno mehaničko opterećenje za nastajanje martenzita induciranog naprezanjem.³³

*S. H. Chang*⁴⁹ je istraživao svojstvo prigušenja vibracija metodom dinamičke mehaničke analize na slitini CuAlNi (*w*(Cu) = 13,0 – 14,1 %, *w*(Al) = 4 %). Utvrđeno je da slitina s 14 % Al, zahvaljujući velikoj koncentraciji pokretnih granica sraslaca u γ_1 -martenzitu (2H), zadovoljava primjenu u kojoj je potrebno svojstvo prigušenja vibracija u izotermnim uvjetima.

S obzirom na sve navedeno, slitine CuAlNi mogu biti dobra zamjena za skupe slitine NiTi u nemedicinskim uvjetima proizvodnje.²³

Na temelju dosada navedenih svojstava slitina s prisjetljivosti oblika cjelokupan pregled i usporedba osnovnih svojstava CuAlNi, CuZnAl i NiTi navedeni su u tablici 2.

T a b I i c a 2 – Usporedba svojstava slitine CuAlNi u odnosu na NiTi i CuZnAl¹⁹

T a b l e 2 – Comparison of properties of CuAlNi with regard to NiTi and CuZnAl alloys¹⁹

Svojstva slitina Properties of the alloys	CuAlNi	NiTi	CuZnAl
talište/°C melting point/°C	1000 – 1050	1250	1020
granica razvlačenja/MPa yield strength/MPa	400	580	80 - 200
vlačna čvrstoća/MPa tensile strength/MPa	500 - 800	800 - 1000	500 - 600
duktilnost/% ductility/%	5 – 7	54	15
zamorna čvrstoća (10º ciklusa)/MPa fatigue strength (10º cycles)/MPa	350	350	270
toplinski kapacitet/Jkg ⁻¹ °C heat capacity/Jkg ⁻¹ °C	373 – 574	450 - 620	390 - 400
toplinska provodnost na 20 °C/W mK ⁻¹ thermal conductivity at 20 °C/W mK ⁻¹	30 - 75	8,6 – 18	84 – 120
entalpija transformacije/kJ kg ⁻¹ transformation enthalpy/kJ kg ⁻¹	9	28	7
gustoća/kg m ⁻³ density/kg m ⁻³	7100 - 7200	6400 - 6500	7540 - 8000
latentna toplina/J kg ⁻¹ latent heat/J kg ⁻¹	7000 – 9000	19000 - 32 000	7000 – 9000
električna otpornost/ $10^6 \Omega m^{-1}$ electrical resistivity/ $10^6 \Omega m^{-1}$	0,1 - 0,14	0,5 – 1,1	0,07 – 0,12
koeficijent toplinskog širenja/10 ⁻⁶ K ⁻¹ thermal expansion coefficient/10 ⁻⁶ K ⁻¹	17	6,6 – 11	17
maksimalno naprezanje pri oporavku/MPa maximum recovery stress/MPa	300 - 600	500 - 900	400 - 700
uobičajeno radno naprezanje/MPa normal working stress/MPa	70	100 – 130	40
maksimalna transformacijska deformacija/% max. transformation strain/%			
broj ciklusa / number of cycles: 1	5 - 6	6 - 8	4 – 6
broj ciklusa / number of cycles: <10²	4	6 - 8	4
broj ciklusa / number of cycles: <10 ⁵		2 - 4(3)	
broj ciklusa / number of cycles: <10 ⁷		0,5	
normalni broj toplinskih ciklusa normal number of thermal cycles	$> 5 \cdot 10^3$	> 10 ⁵	> 10 ⁴
Youngov modul elastičnosti/GPa Young's module/GPa	80 - 100	28 - 83	70 – 100
temperature transformacija promjene oblika/°C shape memory transformation temperatures/°C	-200 - 200	-200 - 110	-200 - 150
temperaturna histereza/°C temperature hysteresis/°C	20 - 40	2 – 50	5 – 20
maksimalni jednosmjerni efekt prisjetljivosti oblika/% max. one way memory effect/%	6	7	4
uobičajeni dvosmjerni efekt prisjetljivosti oblika/% normal two way memory effect/%	1	3,2	0,8
maksimalna temperatura pregrijanja/°C maximum overheating temperature/°C	300	400	150

(nastavlja se na str. 338) (continued on page 338)

Tablica	2 – (nastavak)	Usporedba	svojstava	slitine	CuAlNi u	odnosu n	a NiTi i CuZnAl ¹⁹
---------	----------------	-----------	-----------	---------	----------	----------	-------------------------------

Table 2 – (continued) Comparison of properties of CuAlNi with regard to NiTi and CuZnAl	alloys ¹⁹
---	----------------------

Svojstva slitina Properties of the alloys	CuAlNi	NiTi	CuZnAl
kapacitet prigušenja vibracija/% damping capacity/%	10 – 20	15 – 20	30 - 85
veličina zrna/μm grain size/μm	25 – 100	1 – 100	50 – 150
taljenje, lijevanje i kontrola sastava melting, casting and composition control	prihvatljivo	teško	prihvatljivo
	acceptable	difficult	acceptable
oblikovanje (valjanje, izvlačenje)	teško	teško	lako
forming (rolling, extrusion)	difficult	difficult	easy
hladna deformacija	vrlo teško	prihvatljivo	ograničeno
cold working	very difficult	acceptable	restricted
strojna obradivost	dobra	teška	vrlo dobra
machinability	good	difficult	very good
korozijska otpornost	dobra	izvrsna	prihvatljivo
corrosion resistance	good	excellent	acceptable
biološka kompatibilnost	loša	izvrsna	loša
biological compatibility	bad	excellent	bad
omjer troškova cost ratio	1,5 – 20	10 – 100	1 – 10

Slitine s prisjetljivosti oblika na bazi željeza

Slitine s prisjetljivosti oblika na bazi željeza imaju najmanje istaknut efekt prisjetljivosti oblika u odnosu na ostale slitine. Međutim, zbog niže cijene u odnosu na NiTi, postoji mogućnost primjene u određenim uvjetima kao zamjena za slitinu NiTi. Kod slitina s prisjetljivosti oblika na bazi željeza može doći do martenzitne fazne transformacije fcc \rightarrow bct (plošno centrirana kubična rešetka transformira se u prostorno centriranu tetragonsku strukturu) i fcc \rightarrow hcp (plošno centrirana kubična rešetka transformira se u heksagonsku). Slitine koje prolaze transformaciju fcc \rightarrow bct imaju zadovoljavajući efekt prisjetljivosti oblika, kao npr. FePt, FeNiCoTi i FeNiC.

Najpoznatija slitina na bazi željeza je FeMnSi, kod koje se odvija netermoelastična martenzitna transformacija fcc \rightarrow hcp koja dovodi do nepotpunog jednosmjernog efekta prisjetljivosti oblika. Uz nisku cijenu, glavna prednost slitina na bazi željeza je dobra obradivost, međutim nedostatak je slaba pseudoelastičnost. Poboljšanjem korozijske otpornosti dodatkom kroma i nikla umanjuje se efekt prisjetljivosti oblika. ^{16,33}

U slitinama na bazi željeza efekt prisjetljivosti oblika može nastati jednostavnom promjenom kristalne strukture i promjenom obujma (≤ 2 %). Tijekom transformacije iz plošno centrirane kubične rešetke visokotemperaturne γ -faze u niskotemperaturnu ε -fazu heksagonske kristalne strukture dolazi do promjene u slaganju, npr. ABCABC \rightarrow ABABAB i sl.⁵⁷

Defekti u strukturi imaju važnu ulogu u martenzitnoj transformaciji $\gamma \rightarrow \epsilon$. Iako je energija defekata vrlo mala, ona predstavlja barijeru za odvijanje martenzitne transformacije kod slitina s prisjetljivosti oblika na bazi željeza.⁵⁸ Poboljšanje efekta prisjetljivosti oblika u slitinama FeMnSi može se postići mikrolegiranjem ugljikom i dušikom, međutim treba biti oprezan jer je zabilježen i negativan utjecaj dušika. Utjecaj ugljika može se objasniti povećanjem granice razvlačenja zbog usporavanja kretanja dislokacijskih ravnina. Efekt prisjetljivosti oblika osjetljiv je na kristalografsku orijentaciju, stoga je uvijek superiorniji kod monokristala u odnosu na polikristalne slitine. Tekstura u slitini važna je jer može utjecati na efekt prisjetljivosti oblika, ponajprije zbog istezanja koje se pojavljuje tijekom transformacije. Istezanje tijekom transformacije ovisno je o teksturi slitine. Postizanjem poželjne teksture u osnovi γ-faze postoji mogućnost poboljšanja efekta prisjetljivosti oblika u tim slitinama.

Precipitacijsko očvršćivanje jedno je od mogućih postupaka za poboljšanje čvrstoće slitina na bazi željeza. Dobro oporavljanje oblika može se dobiti nastankom precipitata NbC ili VN nakon valjanja i starenja slitina FeMnSi. Pretpostavlja se da je glavni razlog za takvo poboljšanje uska povezanost precipitata NbC/VN i visoka gustoća slaganja pogrešaka u osnovi fcc te da do poboljšanja oporavka oblika dolazi zbog gustoće i veličine precipitata.⁵⁸

Proizvodnja slitina s prisjetljivosti oblika

Tijekom komercijalne proizvodnje slitina s prisjetljivosti oblika može se javiti nekoliko problema kao npr. kontrola kemijskog sastava slitine, postizanje uvjeta hladne deformacije i toplinske ili termomehaničke obrade za postizanje efekta prisjetljivosti oblika itd. Tehnologije za proizvodnju slitina s prisjetljivosti oblika su indukcijsko taljenje, vakuumsko indukcijsko taljenje, brzo očvršćivanje (*melt spinning*), kontinuirano vertikalno lijevanje, taljenje elektronskim snopom,

339

plazmatsko lučno taljenje.^{19,40,51,59} Nakon toga slijedi obrada slitina vrućom deformacijom (kovanje, valjanje) i hladnom deformacijom (vučenje i valjanje) itd. Kombinacijom ovih tehnika i toplinske obrade nastaje konačni proizvod.⁶

Prednosti indukcijskog taljenja su homogenost i mogućnost kontrole kemijskog sastava ingota s obzirom na to da izmjenična struja miješa talinu. U tom slučaju retorta je napravljena od grafita ili CaO. U slučaju grafitne retorte kontaminacija taline kisikom i ugljikom je neizbježna. Udjel ugljika u talini ovisi o temperaturi taline. Kod slitine NiTi temperatura taline ne smije biti iznad 1450 °C jer tada grafitna retorta postaje neprimjenjiva. Udjel ugljika u talini može iznositi od 200 do 500 ppm i takve male količine ne utječu na karakteristike prisjetljivosti kod slitine NiTi.⁶

Metode brzog očvršćivanja su prihvatljive iako je postupak proizvodnje slitina s prisjetljivosti oblika vrlo zahtjevan. Brzim očvršćivanjem smatra se očvršćivanje brzinama hlađenja 10³ K s⁻¹ i više jer je pri visokim brzinama hlađenja, tijekom očvršćivanja i hlađenja, dostupno vrlo kratko vrijeme za odvijanje difuzijskih procesa. Stoga brzo očvršćivanje može dovesti do nastanka sitnozrnate mikrostrukture, visoke topljivosti u čvrstom stanju, manje segregacija, bolje homogenosti s malo ili bez sekundarnih faza. Zbog svega navedenog tako proizvedene slitine imaju bolju stabilnost mehaničkih svojstava na povišenim temperaturama, manje izražen rast zrna tijekom obrade, bolju otpornost na starenje i smanjenu krhkost, te može doći i do poboljšanja električnih i magnetskih svojstava te korozijske otpornosti slitine.⁴⁰

Na slici 9 shematski je prikazano kontinuirano vertikalno lijevanje slitine CuAlNi. Vidljivo je da slitina očvršćuje u kristalizatoru hlađenom vodom te štap određenog promjera izlazi između valjaka koji se okreću u smjeru istjecanja taline.

S I i k a 9 – Shematski prikaz lijevanja slitine CuAlNi tehnologijom vertikalnog lijevanja¹⁹

Fig. 9 – Schematic illustration of casting of CuAlNi alloy by vertical casting technology¹⁹

Pojam *melt-spinning* označava različite tehnike, kod kojih tanak mlaz taline očvršćuje u hlađenom plinu, tekućini ili na čvrstoj podlozi, za proizvodnju tankih vrpca, žice i/ili vlakana, slika 10. Najkorištenija metoda za proizvodnju brzo skrutnutih vrpci jest *free jet melt spinning* (također poznata kao *chill block melt spinning* – CBMS). Kod navedene metode talina kroz raspršivač dolazi na površinu rotirajućeg valjka gdje očvršćuje. Širina vrpci može biti šira u odnosu na veličinu mlaznice, a debljina vrpce uobičajeno iznosi od 10 do 100 μ m. Uobičajene brzine hlađenja su 10⁵ – 10⁷ K s⁻¹.

S I i k a 1 0 - Shematski prikaz tehnike free jet melt spinner⁴⁰
 F i g . 1 0 - Schematic presentation of free jet melt spinner technique⁴⁰

Brzine hlađenja lijevanih slitina CuAlNi, CuZnAl i NiTi, koje se postižu tehnikom *melt spinning*, dovoljno su velike da bi se zadržala homogena β -faza neovisno o kemijskom sastavu, pri kojem bi se sporijim hlađenjem pojavile neke druge faze. Također, brzina hlađenja postignuta u slitinama s prostorno centriranom kubičnom strukturom omogućava nastanak martenzitne mikrostrukture u lijevanom stanju. Stoga, dobivene vrpce imaju efekt prisjetljivosti oblika već u lijevanom stanju.⁴⁰

S porastom brzine hlađenja veličina zrna opada, a povećava se koncentracija defekata strukture što rezultira poboljšanjem mehaničkih svojstava i sniženjem transformacijskih temperatura. Koncentracija defekata strukture (slobodna mjesta, dislokacije itd.) ima vrlo velik utjecaj na temperature martenzitne transformacije. Defekti rešetke sprječavaju rast martenzita i snižavaju temperature faznih transformacija.

Također postoji mogućnost proizvodnje homogenih slitina na bazi bakra metodom mehaničkog legiranja i praškaste metalurgije. Z. Li et al.35 proizveli su šlitinu CuAlNiMn (maseni udjeli su bili 12 % Cu, 5 % Al i 2 % Ni) metodama mehaničkog legiranja i praškaste metalurgije. Smjesa prahova dobiva se mljevenjem bakra, aluminija, nikla i mangana u bubnjevima s čeličnim kuglicama različitog promjera (6, 10 i 20 mm) s omjerom kuglice : prah = 15 : 1 u trajanju 1, 5, 15, 25, 35 i 45 sati pri brzini od 300 okretaja u minuti. Smjesa se zatim propuhuje argonom kako bi se izbjegla oksidacija smjese. Dobivena smjesa prahova vruće se kompaktira 120 minuta pod tlakom 30 MPa u kalup promjera 30 mm pri temperaturi od 850 °C u vakuumu od 10^{-1} Pa. Nakon toga se slitina vruće istiskuje pri 900 °C. U literaturi³⁶ je zabilježena i proizvodnja slitina s prisjetljivosti oblika Cu-AlNi s w(Cu) = 14 % i w(Al) = 4 % mehaničkim legiranjem i praškastom metalurgijom.

Međutim, zaključeno je da dobivene slitine još uvijek nemaju definirane sustavne i pogodne uvjete proizvodnje za dobivanje zadovoljavajućeg efekta prisjetljivosti oblika.^{35,36}

Primjena slitina s prisjetljivosti oblika

Slitine s prisjetljivosti oblika kao relativno novi funkcionalni materijali imaju široku mogućnost primjene. Zbog njihovih iznimnih svojstava pronalaze primjenu u mnogim industrijskim sektorima:

 strojarska industrija – cijevne spojnice, šipke za mostove, elementi za prigušenje vibracija

 – elektroindustrija – antene mobilnih uređaja, osjetnici (senzori), pokretači (aktuatori), električne spojnice i prekidači, sigurnosni ventili

– medicina – kardiovaskularna kirurgija (filtri krvnih žila), ortopedska kirurgija (implantati – stentovi, vijci, fiksatori kralježnice), ortodontske naprave, okviri naočala

- moda i dekoracija itd.^{2,3,5,10,11,25,26,34,58}

Slitine poput nitinola dominiraju na komercijalnom tržištu (biomedicina, zrakoplovna industrija, automobilska industrija itd.), zbog njihova visokog efekta prisjetljivosti oblika, dobre pseudoelastičnosti i superiornih svojstava poput duktilnosti, povoljnih mehaničkih svojstava, korozijske otpornosti, biokompatibilnosti, biofunkcionalnosti, kao i oporavka oblika (tablica 2).

Također se javlja interes za ugrađivanje žica slitine s prisjetljivosti oblika u kompozitne matrice kako bi se promijenila frekvencija vibracije strukture ili za kontrolu oblika strukturnih elemenata. Vrlo tanke vrpce slitine NiTi s prisjetljivosti oblika mogu poslužiti kao materijal za upotrebu u proizvodnji mikrouređaja za mikrosustave poput mikrocrpki, mikrovalova, mikroomotača, mikrohvataljki, mikrozrcala, mikrokaveza itd. ^{60,61}

Slitine CuAlNi znatno su jeftinije u odnosu na slitine NiTi. Smatraju se važnim funkcionalnim materijalom za aktuatore i senzore, tzv. pametne ili inteligentne materijale. Također ove se slitine mogu upotrebljavati kao konektori za mikroelektroničke čipove.

Feromagnetične slitine s prisjetljivosti oblika mogu se upotrebljavati kao senzori ili magnetski aktuatori zbog njihova jedinstvenog svojstva – magnetski induciranih deformacija.

Zaključak

Na temelju pregleda svojstava najznačajnijih slitina s prisjetljivosti oblika može se zaključiti sljedeće:

– prisjetljivost oblika znači da materijal pod određenim uvjetima ima sposobnost vraćanja u svoj prvobitni oblik

 najpoznatija slitina s prisjetljivosti oblika je NiTi, ali je slitine na bazi bakra (CuZnAl i CuAlNi) sve više zamjenjuju u nemedicinskim uvjetima primjene

 u usporedbi sa slitinom NiTi slitina CuAlZn je jednostavnija i jeftinija za proizvodnju, ima bolju električnu i toplinsku provodnost, veću duktilnost, ali lošiji efekt prisjetljivosti oblika i pseudoelastičnost

– prednosti su slitine CuAlNi jednostavnija proizvodnja, niža cijena i temperature fazne transformacije do 200 °C, dok je nedostatak teška obradivost u hladnom stanju, krupnozrnata mikrostruktura i sklonost lomu po granici zrna

- slitine s prisjetljivosti oblika na bazi željeza još uvijek nemaju komercijalnu primjenu. Uz nisku cijenu, ove slitine posjeduju dobru obradivost, dok pseudoelastičnost gotovo ne postoji

tehnologije za proizvodnju slitina s prisjetljivosti oblika su indukcijsko taljenje, vakuumsko indukcijsko taljenje, brzo očvršćivanje (*melt spinning*), kontinuirano vertikalno lijevanje, taljenje elektronskim snopom, plazmatsko lučno taljenje, te postupci praškaste metalurgije i mehaničkog legiranja
obrada ili deformacija slitina obuhvaća vruću deformaciju (kovanje, valjanje) i hladnu deformaciju (vučenje i valjanje)
efekt prisjetljivosti oblika ključan je čimbenik za široku primjenu navedenih materijala (medicina, strojarska industrija, elektroindustrija).

Popis simbola i kratica List of symbols and abbreviations

- A_f temperatura završetka austenitne transformacije, °C
 austenite transformation finish temperature, °C
- A_s temperatura početka austenitne transformacije, °C – austenite transformation start temperature, °C
- N_e/N_a omjer broja elektrona i atoma – electron/atom number ratio
- $M_{\rm f}$ temperatura završetka martenzitne transformacije, °C martensite transformation finish temperature, °C
- $M_{\rm s}$ temperatura početka martenzitne transformacije, °C martensite transformation start temperature, °C
- w maseni udjel, % – mass fraction, %
- x množinski udjel, % – amount fraction, %
- B2 kubična kristalna struktura – cubic crystall structure
- B19′ martenzitna monoklinska kristalna struktura – martensite monoclinic crystall structure
- bcc prostorno centrirana kubična rešetka – body-centered cubic lattice
- bct prostorno centrirana tetragonska rešetka – body-centered tetragonal lattice
- CVD kemijsko taloženje iz parne faze – chemical vapor deposition
- D0₂₄ heksagonska kristalna struktura – hexagonal crystall structure
- fcc plošno centrirana kubična rešetka – face-centered cubic lattice
- hcp heksagonska gusto pakirana rešetka – hexagonal close-packed lattice
- SMA slitina s prisjetljivosti oblika – shape memory alloy
 - α primarna čvrsta otopina aluminija i nikla u bakru, struktura fcc
 - primary solid solution of aluminum and nickel in copper, fcc structure
 - $\beta ~~$ visokotemperaturna neuređena faza Cu_3Al, bcc struktura
 - high-temperature disordered phase Cu₃Al, bcc structure
- β_1 austenitna faza (kristalna struktura D0₃) – austenite phase (D0₃ crystall structure)

- β_1' martenzitna faza (kristalna struktura18R) – martensite phase (18R crystall structure)
- γ faza Cu₅Zn₈ – Cu₅Zn₈ phase
- γ_1' martenzitna faza (kristalna struktura 2H)
- martensite phase (2H crystall structure)
- $\gamma_2 faza Cu_9Al_4 Cu_9Al_4 phase$
- ε niskotemperaturna martenzitna faza heksagonske kristalne strukture
 - low-temperature martensite phase with hexagonal crystal structure

 χ – faza (Cu,Ni)₂TiAl – (Cu,Ni)₂TiAl phase

Literatura

References

- D. E. Hodgson, M. H. Wu, R. J. Biermann, Shape Memory Alloys, ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook Committee 1990., str. 897–902.
- 2. *M. Gojić*, Alloys with the shape memory effects, Metalurgija (in Croatien) **31** (2-3) (1992) 77–82.
- L. G. Machado, M. A. Savi, Medical applications of shape memory alloys, Brasilian Journal of Medical and Biological Research 36 (2003) 683–691, doi: http://dx.doi.org/10.1590/ S0100-879X2003000600001.
- K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511– 678, doi: http://dx.doi.org/10.1016/j.pmatsci.2004.10.001.
- 5. *D. Ćubela*, Legure koje pamte svoj oblik, Mašinstvo **2** (6) (2002) 83–92.
- 6. K. Otsuka, C. M. Wayman, Shape memory materials, University of Cambridge, Cambridge, 1998.
- 7. H. Funakubo, Shape memory alloys, Gordon and Breach Science Publishers, New York, 1987.
- 8. D. Achitei, P. Vizureanu, N. Cimpoeşu, D. Dană, Thermo-mechanical fatigue of Cu-Zn-Al shape memory alloys, The 44th International Conference on Mining and Metallurgy, Bor, Serbia, 2012., str. 401–404.
- M. Čolić, R. Rudolf, D. Stamenković, I. Anžel, D. Vučević, M. Jenko, V. Lazić, G. Lojen, Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy, Acta Biomater. 6 (2010) 308–317, doi: http:// dx.doi.org/10.1016/j.actbio.2009.06.027.
- G. Song, N. Ma, H.-N. Li, Applications of shape memory alloys in civil structures, Engineering Structures 28 (2006) 1266– 1274, doi: http://dx.doi.org/10.1016/j.engstruct.2005.12.010.
- J. Van Humbeeck, Nonmedical applications of shape memory alloys, Mat. Sci. Eng. A 273-275 (1999) 134–148, doi: http:// dx.doi.org/10.1016/S0921-5093(99)00293-2.
- 12. U. Sari, T. Kirindi, Effects of deformation on microstructure and mechanical properties of a Cu-Al-Ni shape memory alloy, Mater. Charact. **59** (2008) 920–929, doi: http://dx.doi. org/10.1016/j.matchar.2007.07.017.
- Z. Wang, X. F. Liu, J. X. Xie, Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu-Al-Ni alloy, Prog. Nat. Sci. 21 (2011) 368–374, doi: http://dx.doi.org/10.1016/S1002-0071(12)60071-9.

- C. E. Sobrero, P. La Roca, A. Roatta, R. E. Bolmaro, J. Malarría, Shape memory properties of highly textured Cu-Al-Ni-(Ti) alloys, Mat. Sci. Eng. A **536** (2012) 207–215, doi: http://dx.doi. org/10.1016/S1002-0071(12)60071-9.
- W. H. Zou, H. Y. Peng, R. Wang, J. Gui, D. Z. Yang, Heating effects on fine structure of Cu-Al-Ni-Mn-Ti shape memory alloy, Acta Metall. Mater. 43 (8) (1995) 3009–3016, doi: http:// dx.doi.org/10.1016/0956-7151(95)00016-O.
- J. Van Humbeeck, L. Delaey: A comparative review of the (Potential) Shape Memory Alloys, ESOMAT 1989 – Ist European Symposium on Martensitic Transformations in Science and Technology, Bochum, Germany, 1989., str. 15–26.
- C. Segui, E. Cesari, Effect of Mn on Ageing of Cu-Al-Ni-Mn-B Alloys, J. Phys. IV France 5 (1995) 187–191, doi: http://dx.doi. org/10.1051/jp4:1995229.
- Z. Wang, X. F. Liu, J. X. Xie, Effect of γ₂ phase evaluation on mechanical properties of continuous columnar-grained Cu-Al-Ni alloy, Mat. Sci. Eng. A **532** (2012) 536–542, doi: http://dx.doi. org/10.1016/j.msea.2011.11.019.
- M. Gojić, S. Kožuh, B. Kosec, I. Anžel, Properties and applications of shape memory alloys, IX Naučno-stručni simpozij "Metalni i nemetalni materijali", Zenica, 2012., str. 13–23.
- A. Biesiekierski, J. Wang, M. A.-H. Gepreel, C. Wen, A new look at biomedical Ti-based shape memory alloys, Acta Biomater. 8 (2012) 1661–1669, doi: http://dx.doi.org/10.1016/j. actbio.2012.01.018.
- L. Sun, W. M. Huang, Z. Ding, Y. Zhao, C. C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: A review, Materials and Design 33 (2012) 577–640, doi: http:// dx.doi.org/10.1016/j.matdes.2011.04.065.
- A. C. Kneissl, E. Unterweger, M. Bruncko, G. Lojen, K. Mehrabi, H. Scherngell, Microstructure and Properties of NiTi and CuAlNi Shape Memory Alloys, Metalurgija 14 (2008) 89–100. URL: http://www.metalurgija.org.rs/mjom/vol14/No%20 2/2KNEISSL.pdf (2. 1. 2013.).
- A. Creuziger, W. C. Crone, Initial transformation around a notch tip in CuAlNi: Experiment and modeling, Acta Mater. 56 (2008) 518–526, doi: http://dx.doi.org/10.1016/j.actamat.2007.09.043.
- N. Figueira, T. M. Silva, M. J. Carmezim, J. C. S. Fernandes, Corrosion behaviour of NiTi alloy, Electrochim. Acta 54 (2009) 921–926, doi: http://dx.doi.org/10.1016/j.electacta.2008.08.001.
- W. M. Huang, C. L. Song, Y. Q. Fu, C. C. Wang, Y. Zhao, H. Purnawali, H. B. Lu, C. Tang, Z. Ding, J. L. Zhang, Shaping tissue with shape memory materials, Adv. Drug Deliver. Rev. 65 (2013) 515–535, doi: http://dx.doi.org/10.1016/j. addr.2012.06.004.
- G. Song, N. Ma, H.-N. Li, Applications of shape memory alloys in civil structures, Eng. Struct. 28 (2006) 1266–1274, doi: http://dx.doi.org/10.1016/j.engstruct.2005.12.010.
- M. L. Castro, R. Romero, Transformation during continuous cooling of a β-Cu-22.72Al-3.55Be (at. %) alloy, Scripta Mater. 42 (2000) 157–161, doi: http://dx.doi.org/10.1016/S1359-6462(99)00330-9.
- S. Montecinos, A. Cuniberti, A. Sepúlveda, Grain size and pseudoelastic behaviour of a Cu-Al-Be alloy, Mater. Charact. 59 (2008) 117–123, doi: http://dx.doi.org/10.1016/j. matchar.2006.11.009.
- Z. G. Wei, H. Y. Peng, D. Z. Yang, C. Y. Chung, J. K. L. Lai, Reverse transformations in CuAlNiMnTi alloy at elevated temperatures, Acta Mater. 44 (3) (1996) 1189–1199, doi: http:// dx.doi.org/10.1016/1359-6454(95)00233-2.
- C. Segui, E. Cesari, Effect of Mn on Ageing of Cu-Al-Ni-Mn-B Alloys, J. Phys. IV 5 (1995) 187–191, doi: http://dx.doi. org/10.1051/jp4:1995229.

- N. M. Lohan, B. Pricop, L.-G. Bujoreanu, N. Cimpoeşu, Heating rate effects on reverse martensitic transformation in a Cu-Zn-Al shape memory alloy, Int. J. of Mater. Res. **102** (11) (2011) 1345–1351, doi: http://dx.doi.org/10.3139/146.110595.
- V. Asanović, K. Delijić, N. Jauković, A study of transformations of β-phase in Cu-Zn-Al shape memory alloys, Scripta Mater. 58 (2008) 599–601, doi: http://dx.doi.org/10.1016/j.scriptamat.2007.11.033.
- E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mech. Mater. 38 (2006) 391–429, doi: http://dx.doi.org/10.1016/j.mechmat.2005.05.027.
- W. M. Huang, Z. Ding, C. C. Wang, J. Wei, Y. Zhao, H. Purnawali, Shape memory materials, Mater. Today 13 (2010) 54–61, doi: http://dx.doi.org/10.1016/S1369-7021(10)70128-0.
- Z. Li, Z. Y. Pan, N. Tang, Y. B. Jiang, N. Liu, M. Fang, F. Zheng, Cu-Al-Ni-Mn shape memory alloy processed by mechanical alloying and powder metallurgy, Mat. Sci. Eng. A 417 (2006) 225–229, doi: http://dx.doi.org/10.1016/j.msea.2005.10.051.
- S. M. Tang, C. Y. Chung, W.G. Liu, Preparation of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloying and Powder Metallurgy Method, J. Mater. Process. Tech. 63 (1997) 307– 312, doi: http://dx.doi.org/10.1016/S0924-0136(96)02641-6.
- C. E. Sobrero, P. La Roca, A. Roatta, R. E. Bolmaro, J. Malarría, Shape memory properties of highly textured Cu-Al-Ni-(Ti) alloys, Mat. Sci. Eng. A 536 (2012) 207–215, doi: http://dx.doi. org/10.1016/j.msea.2011.12.104.
- Z. Xiao, Z. Li, M. Fang, S. Xiong, X. Sheng, M. Zhou, Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu-Al-Ni-Mn alloy, Mat. Sci. Eng. A 488 (2008) 266–272, doi: http://dx.doi.org/10.1016/j. msea.2007.11.037.
- W. H. Zou, H. Y. Peng, R.Wang, J. Gui, D. Z. Yang, Heating effects on fine structure of a Cu-Al-Ni-Mn-Ti shape memory alloy, Acta Metall. Mater. 43 (8) (1995) 3009–3016, doi: http:// dx.doi.org/10.1016/0956-7151(95)00016-O.
- G. Lojen, I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec, M. Bizjak, Microstructure of rapidly solidified Cu-Al-Ni shape memory alloy ribbons, J. Mater. Process. Tech. 162-163 (2005) 220–229, doi: http://dx.doi.org/10.1016/j.jmatprotec.2005.02.196.
- R. Gastien, C. E. Corbellani, M. Sade, F. C. Lovey, Thermodynamical aspects of martensitic transformations in CuAlNi single crystals, Scripta Mater. 50 (2004) 1103–1107, doi: http:// dx.doi.org/10.1016/j.scriptamat.2004.01.032.
- 42. R. Gastien, C. E. Corbellani, P. B. Bozzano, M. L. Sade, F. C. Lovey, Low temperature isothermal ageing in shape memory CuAlNi single crystals, J. Alloys Compd. **495** (2010) 428–431, doi: http://dx.doi.org/10.1016/j.jallcom.2009.10.100.
- G. Covarel, V. Pelosin, A. Rivière, Influence of annealings on CuAlNi martensite studied by internal friction, Scripta Mater.
 46 (2002) 319–324, doi: http://dx.doi.org/10.1016/S1359-6462(01)01248-9.
- 44. U. Sari, I. Aksoy, Electron microscopy study of 2H and 18R martensites in Cu-11.92 wt% Al-3.78 wt% Ni shape memory alloy, J. Alloys Compd. **417** (2006) 138–142, doi: http://dx. doi.org/10.1016/j.jallcom.2005.09.049.
- A. Aydogdu, Y. Aydogdu, O. Adigüzel, Improvement of Hardness and Microstructure by Ageing in Shape Memory CuAl-Ni Alloys, J. Phys. IV 7 (1997) 311–316, doi: http://dx.doi. org/10.1051/jp4:1997549.

- O. Adiguzel, Smart materials and influence of atom sizes on martensite microstructures in copper-based shape memory alloys, J. Mater. Process. Tech. 185 (2007) 120–124, doi: http:// dx.doi.org/10.1016/j.jmatprotec.2006.03.111.
- S. Vedantam, R. Abeyaratne, A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy, Int. J. Nonlinear Mech. 40 (2005) 177–193, doi: http://dx.doi.org/10.1016/j.ijnonlinmec.2004.05.005.
- D. Liu, H. Hashimoto, Electron microscopy study of martensite in Cu-11.2wt.% Al-3wt.%Ni, J. Mater. Sci. 32 (1997) 1657– 1663, doi: http://dx.doi.org/10.1023/A:1018507512870.
- 49. S. H. Chang, Influence of chemical composition on the damping characteristics of Cu-Al-Ni shape memory alloys, Mater. Chem. Phys. **125** (2011) 358–363, doi: http://dx.doi. org/10.1016/j.matchemphys.2010.09.077.
- 50. *S. W. Husain, P. C. Clapp*, The effect of ageing on the fracture behavior of Cu-Al-Ni β phase alloys, Metall. Trans. **19A** (1988) 1761–1766, doi: http://dx.doi.org/10.1007/BF02645144.
- M. Gojić, S. Kožuh, I. Anžel, G. Lojen, I. Ivanić, B. Kosec, Microstructural and phase analysis of CuAlNi shape-memory alloy after continuous casting, Mater. Technol. 47 (2) (2013) 149–152.
- 52. *H. Kato, Y. Yasuda, K. Sasaki*, Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite, Acta Mater. **59** (2011) 3955–3964, doi: http://dx.doi. org/10.1016/j.actamat.2011.03.021.
- 53. Ş. Nevin Balo, N. Sel, Effects of thermal aging on transformation temperatures and some physical parameters of Cu-13.5wt.%Al-4wt.%Ni shape memory alloy, Thermochim. Acta 536 (2012) 1–5, doi: http://dx.doi.org/10.1016/j. tca.2012.02.007.
- J. L. L. Gama, C. C. Dantas, N. F. Quadros, R. A. S. Ferreira, Y. P. Yadava, Microstructure – Mechanical Property Relationship to Copper Alloys with Shape Memory during Thermomechanical Treatments, Metall. Mater. Trans. A 37 (2006) 77–87.
- Y.-R. Cho, Y.-H. Kim, T. D. Lee, Precipitation hardening and recrystallisation in Cu-4% to 7% Ni-3% Al alloys, J. Mater. Sci. 26 (1991) 2879–2886, doi: http://dx.doi.org/10.1007/ BF01124816.
- N. Zárubová, A. Gemperle, V. Novák, Initial stages of γ₂ precipitation in an aged Cu-Al-Ni shape memory alloy, Mat. Sci. Eng. A **222** (1997) 166–174, doi: http://dx.doi.org/10.1016/ S0921-5093(96)10520-7.
- 57. *P. Donner*, Microstructure and phase-transformation in meltspun shape memory alloys, J. Phys. IV **1** (1991) 335–360, doi: http://dx.doi.org/10.1051/jp4:1991453.
- T. W. Duerig, J. Albrecht, G. H. Gessinger, A Shape Memory Alloy for High-Temperature Applications, J. Met. **12** (1982) 14–20, doi: http://dx.doi.org/10.1007/BF03338156.
- I. Ivanić, M. Gojić, S. Kožuh, M. Rimac, O. Beganović, K. Begović, D. Čubela, Razvoj Cu slitina s prisjetljivosti oblika, Conference Proceedings of Techno-Educa 2012., Zenica, BiH, 2012., str. 82–87.
- R. Zarnetta, S. Kneip, Ch. Somsen, A. Ludwig, High-throughput characterization of mechanical properties of Ti-Ni-Cu shape memory thin films at elevated temperature, Mat. Sci. Eng. A 528 (2011) 6552–6557, doi: http://dx.doi.org/10.1016/j. msea.2011.05.006.
- 61. *T. Shahrabi, S. Sanjabi, E. Saebnoori, Z. H. Barber*, Extremely high pitting resistance of NiTi shape memory alloy thin film in simulated body fluids, Mater. Lett. **62** (2008) 2791–2794, doi: http://dx.doi.org/10.1016/j.matlet.2008.01.052.

EXTENDED ABSTRACT Shape Memory Alloys (Part II): Classification, Production and Application

I. Ivanić,^{*} M. Gojić, and S. Kožuh

Shape memory alloys (SMAs) have been extensively investigated because of their unique shape memory behaviour, *i.e.* their ability to recover their original shape they had before deformation. Shape memory effect is related to the thermoelastic martensitic transformation. Austenite to martensite phase transformation can be obtained by mechanical (loading) and thermal methods (heating and cooling). Depending on thermomechanical conditions, SMAs demonstrate several thermomechanical phenomena, such as pseudoelasticity, superelasticity, shape memory effect (one-way and two-way) and rubber-like behaviour.

Numerous alloys show shape memory effect (NiTi-based alloys, Cu-based alloys, Fe-based alloys etc.). Nitinol (NiTi) is the most popular and the most commonly used SMA due to its superior thermomechanical and thermoelectrical properties. NiTi alloys have greater shape memory strain and excellent corrosion resistance compared to Cu – based alloys. However, they are very costly. On the other hand, copper-based alloys (CuZn and CuAl based alloys) are much less expensive, easier to manufacture and have a wider range of potential transformation temperatures. The characteristic transformation temperatures of martensitic transformation of CuAlNi alloys can lie between – 200 and 200 °C, and these temperatures depend on Al and Ni content. Among the Cu – based SMAs, the most frequently applied are CuZnAl and CuAlNi alloys. Although CuZnAl alloys with better mechanical properties are the most popular among the Cu-based SMAs, they lack sufficient thermal stability, while CuAlNi shape memory alloys, in spite of their better thermal stability, have found only limited applications due to insufficient formability owing to the brittle γ_2 precipitates. The most important disadvantage of polycrystalline CuAlNi alloys is a small reversible deformation (one-way shape memory effect: up to 4 %; two-way shape memory effect: only approximately 1.5 %) due to intergranular breakdown at low stress levels.

The technologies for production of shape memory alloys are induction melting, vacuum melting, vacuum arc melting, following hot and cold working (forging, rolling, wire drawing). In addition, rapid solidification methods, like melt spinning and continuous casting have been developed. These methods are characterized by high cooling rates. High cooling rates allow very short time for diffusion processes and may lead to extremely fine microstructure, better homogeneity etc.

SMAs have found applications in many areas due to their thermomechanical and thermoelectrical properties (biomedical applications, engineering industry, electrical industry).

In this paper, a review of shape memory alloys, properties and applications of mentioned materials is presented.

Faculty of Metallurgy, University of Zagreb Aleja narodnih heroja 3 44 103 Sisak, Croatia Received July 29, 2013 Accepted November 29, 2013