# Utjecaj višestjenih ugljikovih nanocijevi na fotokatalitička svojstva TiO2

Čavrak, Tea

### Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Metallurgy / Sveučilište u Zagrebu, Metalurški fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:115:107206

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-06



Repository / Repozitorij:

Repository of Faculty of Metallurgy University of Zagreb - Repository of Faculty of Metallurgy University of Zagreb





### SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET

Tea Čavrak

## DIPLOMSKI RAD

Sisak, rujan 2019.

### SVEUČILIŠTE U ZAGREBU METALURŠKI FAKULTET

Tea Čavrak

## UTJECAJ VIŠESTJENIH UGLJIKOVIH NANOCIJEVI NA FOTOKATALITIČKA SVOJSTVA TiO<sub>2</sub>

## DIPLOMSKI RAD

Mentor/sumentor: izv. prof. dr. sc. Ivan Brnardić Igor Jajčinović mag. ing. oecoing.

Članovi Povjerenstva za ocjenu i obranu diplomskog rada: izv. prof. dr. sc. Tamara Holjevac Grgurić izv. prof. dr. sc. Ivan Brnardić izv. prof. dr. sc. Anita Štrkalj

Sisak, rujan 2019.

Zahvaljujem se izv. prof. dr. sc. Ivanu Brnardiću i Igoru Jajčinoviću mag. ing. oecoing. na uloženom trudu i strpljenju prilikom izrade diplomskog rada. Zahvaljujem se svima koju su mi svojim savjetima pomogli pri izradi ovog rada. Veliko hvala kolegi Igoru Jajčinoviću mag. ing. oecoing. na pomoći pri izradi eksperimentalnog dijela rada. Zahvaljujem se svojim roditeljima, sestri i Tomi na ukazanoj podršci. Hvala vam na svoj potpori koju ste mi pružili tijekom mog studiranja.

## SAŽETAK

Sve veća uporaba lijekova, pesticida i drugih sličnih proizvoda utječe na onečišćenje vode. Takvi proizvodi spadaju u mikroonečišćenja koja zahtijevaju posebne uvijete pročišćavanja. Jedan od načina pročišćavanja su napredni oksidacijski procesi u koje spada i fotokazaliza. Za proces fotokatalize potrebna je prisutnost fotokatalizatora, jedan od fotokatalizatora koji se koristi u fotokatalizi je TiO<sub>2</sub>. Za poboljšanje svojstava TiO<sub>2</sub> mogu se koristiti različiti elementi, spojevi i ugljikove nanocijevi.

U radu su pripremljeni fotokatlizatori  $TiO_2$  i  $TiO_2/višestjene ugljikove nanocijevi s različitim udjelima nanocijevi nanošenih sol-gel postupkom na staklenu mrežicu. Uspješno vezanje fotokatalizatora na staklenu mrežicu potvrđeno je vizualno i SEM/EDS analizom. Ispitana su fotokatalitička svojstva razgradnjom salicilne kiseline u reaktoru sa simuliranim sunčevim zračenjem. Utvrđeno je da udio od 5 % ugljikovih nanocijevi daje najbolje rezultate razgradnje salicilne kiseline fotokatalizom.$ 

*Ključne riječi:* fotokataliza, ugljikove nanocijevi, titanijev dioksid (TiO<sub>2</sub>), fotokatalitička svojstva.

### IMPACT OF MULTI WALL CARBON NANOTUBES OF PHOTOCATALYTIC PROPERTIES OF TiO<sub>2</sub>

### SUMMARY

The increasing use of medicines, pesticides and other similar products is affecting water pollution. Such products belong to microimpurities that require special purification conditions. One of the methods of purification is advance oxidation processes, which include photocatalysis. Photocatalysis requires the presence of photocatalysts, one of the photocatalysts used in photocatalysis is TiO<sub>2</sub>. Various elements, compounds and carbon nanotubes can be used to improve the properties of TiO<sub>2</sub>.

In this paper photocatalysts from  $TiO_2$  and  $TiO_2$ /multi walled carbon nanotubes with different proportions of nanotubes deposited by sol-gel process on a glass mesh has been prepared. The successful bonding of the photocatalyst to the glass mesh was confirmed visually and by SEM/EDS analysis. The photocatalytic properties were examined by decomposing salicylic acid in reactor with a simulated solar radiation. It was established that 5 wt.% of carbon nanotubes gave the best results for the degradation of salicylic acid by photocatalysis.

**Keywords:** photocatalysis, carbon nanotubes, titanium dioxide (TiO<sub>2</sub>), photocatalytic properties

# SADRŽAJ

| 1. | UVOD                                                                                                                                                                                                                                       | 1              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2. | OPĆI DIO                                                                                                                                                                                                                                   | 2              |
|    | 2.1. Napredni oksidacijski procesi                                                                                                                                                                                                         | 2              |
|    | <ul><li>2.2. Proces fotokatalize</li><li>2.2.1. Homogena fotokataliza</li><li>2.2.2. Heterogena fotokataliza</li></ul>                                                                                                                     | 4<br>4<br>5    |
|    | 2.3. Mehanizam i osnove fotokatalitičkih reakcija                                                                                                                                                                                          | 8              |
|    | <ul><li>2.4. Titanijev dioksid (TiO<sub>2</sub>)</li><li>2.4.1. Strukturna svojstva</li><li>2.4.2. Elektronska svojstva</li></ul>                                                                                                          | 10<br>10<br>11 |
|    | <ul> <li>2.5. Fotokatalitički kopmoziti ugljične nanocijevi (CNT) – TiO<sub>2</sub></li> <li>2.5.1. Fotokataliza CNT-a i TiO<sub>2</sub></li> <li>2.5.2. Mehanizmi unapređenja fotokatalize s CNT – TiO<sub>2</sub> kompozitima</li> </ul> | 12<br>12<br>12 |
|    | 2.6. Salicilna kiselina kao farmaceutik                                                                                                                                                                                                    | 14             |
| 3. | EKSPERIMENTALNI DIO                                                                                                                                                                                                                        | 15             |
|    | 3.1. Materijali                                                                                                                                                                                                                            | 15             |
|    | 3.2. Metoda pripreme i nanošenja fotokatalizatora                                                                                                                                                                                          | 15             |
|    | 3.3. Reaktor za ispitivanje fotokatalitičkih svojstava                                                                                                                                                                                     | 15             |
|    | 3.4. Mrežice nakon nanošenja fotokatalizatora                                                                                                                                                                                              | 17             |
|    | 3.5. UV/VIS spektofotometrija                                                                                                                                                                                                              | 20             |
|    | 3.6. Skenirajuća elektronska mikroskopija (SEM)                                                                                                                                                                                            | 20             |
| 4. | REZULTATI I RASPRAVA                                                                                                                                                                                                                       | 21             |
| 5. | ZAKLJUČAK                                                                                                                                                                                                                                  | 24             |
| 6  | LITERATURA                                                                                                                                                                                                                                 | 25             |

### 1. UVOD

U posljednjih nekoliko desetljeća potrošnja vode po stanovniku se višestruko povećala zbog rastućeg broja stanovništva, urbanizacije i industrijalizacije, pa je u današnjem društvu voda postala visokovrijedno dobro [1]. U današnje vrijeme se sve češće susrećemo s vodama koje kvalitetom nisu pogodne za ljudsku upotrebu [2]. Metode kojima se održivo poslovanje može ostvariti uz pozitivan ekonomski učinak su regeneracija i recirkulacija vode u proces te učinkovitija obrada otpadnih voda prije ispuštanja u okoliš [1]. Otpadne vode predstavljaju jedan od vodećih ekoloških problema, a veliki problem izazivaju industrijske otpadne vode nastale u industrijama nakon upotrebe vode u procesu proizvodnje. Industrijske otpadne vode nerijetko sadrže štetne i toksične tvari organskog i anorganskog podrijetla koje imaju izrazito negativan utjecaj na zdravlje ljudi i okoliš [3]. Orgasnkog podrijetla su mikroonečišćujuće tvari u koje ubrajamo humane i veterinarske lijekove (farmaceutici), kemikalije iz industrije te pesticide koji uslijed kontinuiranih proizvodnih procesa stalno pronalaze svoje mjesto u okolišu [4]. Mikroonečišćujuće tvari obično su prisutni u vodama u tragovima u koncentracijama u rasponu od nekoliko ng/L do nekoliko µg/L. Niska koncentracija i raznolikost mikroonečišćujućih tvari komplicira procedure otkrivanja i analize te stvaraju izazove za postupke pročišćavanja otpadnih voda [5]. Kako je kemijski sastav otpadnih voda kompleksan, sve je veća potreba za razvojem novih postupaka obrade otpadnih voda kako bi se omogućilo smanjenje koncentracije određenih mikroonečišćujućih tvari primjenom bioloških, fizikalnih, fizikalno-kemijskih i kemijskih postupaka. Međutim, zbog ekonomske neisplativosti i velikih potrošnji kemikalija koriste se napredni oksidacijski procesi AOP (engl. Advanced Oxidation Process). U oksidacijske procese spada fotokataliza koja predstavlja proces visoke djelotvornosti za obradu voda i otpadnih voda prilikom čega dolazi različitih mikroonečišćujućih do razgradnje tvari [3]. Za potpunu razgradnju mikroonečišćujućih tvari koriste se fotokatalizatori te je jedan od njih titanijev dioksid (TiO<sub>2</sub>). TiO<sub>2</sub> se najčešće koristi zbog svoje kemijske i termičke stabilnosti, niske toksičnosti, relativno visoke katalitičke aktivnosti te zbog niske cijene [4]. Pošto TiO<sub>2</sub> ima energiju zabranjene zone  $E_{bg} = 3,0-3,2 \text{ eV}$ , on se može aktivirati jedino apsorbcijom fotona UVA zračenja [3]. Zračenjem fotokatalizatora TiO<sub>2</sub> nastaju hidroksilni radikali, •OH te oni kao neselektivni oksidansi svojim oksidacijskim potencijalom gotovo potpuno pretvaraju organsku tvar u vodu (H<sub>2</sub>O) i ugljikov dioksid (CO<sub>2</sub>), odnosno uzrokuju mineralizaciju organske tvari [4]. TiO<sub>2</sub> fotokatalizator se može koristiti u vodenoj suspenziji ili može biti imobiliziran na čvrste nosače. U vodenoj suspenziji dobiva na većoj važnosti u području AOP-a za razgradnju toksičnih spojeva jer je kemijski inertan, stabilan, ima jaku oksidacijsku moć i veliku površinu koja je dostupna za redoks reakcije [6]. TiO<sub>2</sub> se najčešće koristi u suspendiranom obliku, no ipak se smatra da je imobilizacija katalizatora korisnija jer se TiO<sub>2</sub> lakše uklanja iz sustava te je moguće višekratno korištenje imobiliziranog katalizatora. Količina fotokatalizatora koja se koristi u imobiliziranom stanju manja je nego količina fotokatalizatora koja se koristi u suspenziji. Imobilizacija TiO<sub>2</sub> postiže se na različitim nosačima kao što su staklo, polimeri, metal, silikagel, aktivni ugljen, keramika itd. Primjenom fotokatalizatora u industriji očekuje se mogućnost recikliranja i uporaba u više ciklusa što se može postići vezanjem TiO<sub>2</sub> na nosač [4]. Kako bi se poboljšao proces fotokatalize uz  $TiO_2$  moguće je dodati i ugljikove nanocijevi (engl. Carbon nanotubes, CNT). U ovom radu biti će prikazane priprave fotokatalizatora imobilizacijom TiO<sub>2</sub> na nosače sol-gel metodom uporabom klasičnog sušenja te utjecaj višeslojnih ugljikovih nanocijevi na fotokatalitička svojstva TiO<sub>2</sub>.

## 2. OPĆI DIO

#### 2.1. Napredni oksidacijski proces

Napredni oksidacijski procesi su procesi prilikom kojih u različitim reakcijskim sustavima dolazi do stvaranja reaktivnih hidroksilnih radikala (•OH). Oni imaju visok oksidacijski potencijal te mogu brzo oksidirati većinu složenih organskih spojeva u uvjetima atmosferskog tlaka i temperature [6]. Općenito, •OH radikali mogu nastati pod utjecajem kemijske, električne, mehaničke ili energije zračenja, pa se tako AOP-i mogu podijeliti na kemijske, fotokemijske i fotokatalitičke, mehaničke i električne procese. Fotokemijski i fotokatalitički procesi primjenom UV zračenja uz prisutnost oksidansa (ozon ili vodikov peroksid) ili katalizatora (titanijev dioksid, cinkov oksid) dovode do nastajanja •OH radikala. Ujedno •OH radikali mogu nastati i uslijed mehaničke energije kao i uslijed upotrebe električne energije. Na slici 1 Shematski je prikaz naprednih oksidacijskih procesi i njegovih kombinacija [7].





Napredni oksidacijski procesi uspješno razgrađuju biološki toksične te različite postojane organske onečišćujuće tvari, kao što su aromatski spojevi, pesticidi, farmaceutici te hlapivi organski spojevi [6].

Nastali radikali djeluju dosta brzo te napadaju organske molekule. Ovisno o vrsti tih molekula moguće su tri vrste reakcija [8]:

elektrofilna adicija hidroksilnih radikala na dvostruku vezu



• oduzimanje vodikovog atoma

$$R - H + HO \bullet \to R \bullet + H_2O \tag{2}$$

• prijelaz elektrona

$$R - H + HO^{\bullet} \rightarrow (R - H)^{\bullet} + HO^{-}$$
(3)

Najveća prednost AOP procesa u usporedbi s ostalim procesima obrade je u tome što nema ili gotovo nema nastajanja sekundarnog otpada prilikom razgradnje organskih onečišćivača u otpadnim vodama [9]. Najčešće primjenjivi napredni oksidacijski procesi uključuju različite izvedbe procesa s obzirom na način njihovog provođenja [10]:

- procesi koji se provode u prisutnosti UV zračenja (fotoliza),
- procesi koji se zasnivaju na primjeni ozona (O<sub>3</sub>, ozonoliza),
- procesi koji se zasnivaju na kombinaciji fotolize i ozonolize (UV/O<sub>3</sub>),
- fotokatalitički procesi s TiO<sub>2</sub> kao katalizatorom (UV/TiO<sub>2</sub>),
- fotokatalitički procesi s H<sub>2</sub>O<sub>2</sub> kao oksidansom (UV/TiO<sub>2</sub>/ H<sub>2</sub>O<sub>2</sub>),
- Fentonov proces Fe(II)/ H<sub>2</sub>O<sub>2</sub> u kojima je raspad H<sub>2</sub>O<sub>2</sub> kataliziran Fe ionima,
- Fentonu slični proces (Fe(III)/  $H_2O_2$ , Fe(0)/  $H_2O_2$ ).

Nadalje u tablici 1 prikaz je najčešćih naprednih oksidacijskih procesa

| Naprední oksidacijski procesi |                     |                     |                |           |  |  |  |
|-------------------------------|---------------------|---------------------|----------------|-----------|--|--|--|
| Kemijski                      | Fotokemijski        | Fotokatalitički     | Električni     | Mehanički |  |  |  |
| $O_3, O_3/H_2O_2$             | $UV/H_2O_2$         | UV/TiO <sub>2</sub> | Visokonaponski | UZV       |  |  |  |
| $Fe^{2+}/H_2O_2$              | UV/ O <sub>3</sub>  | UV/ZnO              | Električni     |           |  |  |  |
| ${\rm Fe}^{3+}/{\rm H_2O_2}$  | $H_2O_2$            |                     | Pražnjenje     |           |  |  |  |
|                               | $UV/Fe^{2+}/H_2O_2$ |                     |                |           |  |  |  |
|                               | $UV/Fe^{3+}/H_2O_2$ |                     |                |           |  |  |  |
|                               |                     |                     |                |           |  |  |  |

Tablica 1. Najčešći napredni oksidacijski procesi [6]

#### 2.2. Proces fotokatalize

Riječ fotokataliza proizlazi od grčkog prefiksa foto (phos: svjetlo) i kataliza (katalyo: rastavljanje, raspad) [3]. Pojam fotokataliza pojavio se 1930-ih godina dvadesetog stoljeća te danas predstavlja granu kemije koja se bavi katalitičkim reakcijama pod utjecajem svjetlosti. Jedan od prvih pokušaj definiranja fotokatalize je i pokušaj IUPAC-ove komisije. Oni su fotokatalizu definirali kao "katalitičku reakciju koja uključuje apsorpciju svjetlosti od strane katalizatora ili supstrata" [11]. Fotokataliza je proces prilikom kojeg se reakcije iniciraju svjetlom u prisustvu tvari koje su poznate pod nazivom fotokatalizatori [12]. Kada svjetlost odgovarajuće energije, tj. fotoni određene valne duljine tijekom fotokatalize stupe u kontakt s katalizatorom, oni aktiviraju katalizator te dolazi do prijelaza elektrona iz valentne u vodljivu vrpcu. Nakon što elektroni prijeđu iz valentne vrpce u vodljivu, dolazi do nastajanja šupljine u valentnoj ljusci (h<sup>+</sup>). To upućuje da dolazi do razdvajanja naboja na čemu se temelji heterogena fotokataliza. Fotokataliza može biti homogena i heterogena. Procesi heterogene fotokazalize postali su važna tehnologija koja dovodi do bolje i potpunije mineralizacije mnogih organskih mikroonečišćenja uz pomoć korištenja fotokatalizatora i UV zračenja te se kao rezultat dobivaju produkti koji su ekološki prihvatljivi, a pri tome se ne upotrjebljuju nikakve dodatne kemikalije. Uporabom homogenih ili heterogenih katalizatora znatno se povećava efikasnost kemijskih proces. Kod homogene fotokatalize imamo jednofazni sistem, tj. potrebno je pripremiti suspenziju koja se sastoji od katalizatora i otopine. U homogene procese spadaju reakcije ozona, Fentonove reakcije ili reakcije vodikovog peroksida, a mogu se odvijati uz ili bez prisustva UV zračenja. Za razliku od homogene, heterogena fotokataliza treba imati izvor zračenja. Heterogena fotokataliza ima dvo ili višefazni sustav, a kao katalizatori se koriste ZnO i TiO<sub>2</sub>. Fotokatalizatori se nanose na čvrste podloge, a reakcije se odvijaju na površini između fotokatalizatora i druge faze te ta faza može biti plinovita ili tekuća. Kako prilikom heterogene fotokatalize djelovanjem zračenja određene valne duljine nastaju šupljine, one se mogu manifestirati na površini poluvodiča. Fotokatalitička reakcija značajno ovisi o apsorpciji UV/VIS zračenja na površini katalizatora. Brzina reakcije ovisi o intenzitetu zračenja, te brzina reakcije raste sa povećanjem intenziteta zračenja. Kod fotokatalize vrsta zračenja ne utječe na mehanizam reakcije te je neophodno da valna duljina zračenja bude dovoljna za pobudu, tj. da kvantum energija zračenja (hv) bude veći od širine zabranjene zone ( $E_{bg}$ ). Prikladna valna duljina u UV području je 300 nm <  $\lambda$  < 390 nm kada je širina zabranjene zone fotokatalizatora od 2,8 do 3,2 eV. Kada se upotrebljava UV zračenje, prilikom kemijskih procesa nastaju slobodni radikali, jaka su oksidacijska sredstva i služe za oksidaciju mikroonečišćujućih tvari. Molekule se pobuđuju pomoću UV zračenja, tj. prelaze u stanje više energije. Molekule kratko ostaju u pobuđenom stanju, nakon čega se vraćaju u početno stanje ili se razgrađuju. UV zračenje se najčešće primjenjuje kod dezinfekcije vode te služi za uklanjanje mikroonečišćenja [11].

#### 2.2.1. Homogena fotokataliza

Među homogenim fotokatalitičkim procesima koji su od presudne važnosti za okoliš i imaju važnu ulogu u prirodnom pročišćavanju ultraljubičastim (UV) zraka sunčeve svjetlosti, nastaju hidrokompleksi prijelaznog materijala (željezo, bakar, krom) u višem oksidacijskom stanju. Tako stvoreni hidroksilni radikali reagiraju sa supstratom, što dovodi do akumulacije raznih organskih radikala u otopini. Fotokemijski proces u ovom slučaju je oksidacija supstrata hidroksilnog radikala koji nastaje kao rezultat fototransfernog naboja u hidrauličkom polju unutar metalnih iona (Me) u višem valentnom stanju.

 $MeOH^{n+} + h\nu \longrightarrow Me^{(n-1)} + \bullet OH$  (4)

$$MeL^{n+} + hv \longrightarrow Me^{(n-1)} + \bullet L$$
 (5)

Pod djelovanjem atmosferskog tlaka izvorni oblik prijelaznog metala regenerira se istovremenom stvaranjem superoksidnih iona, peroksilnih radikala i radikalne oksidacije produkata degradiranog supstrata. Interakcija organskih onečišćivala s hidroksilnim radikalima nastalim fotoreakcijom, uz prisutnost molekularnog kisika, praćene su stvaranjem vodikovog peroksida. Fotokemijski proces može se provesti fotonukleiranim prijenosom elektrona iz unutrašnje sfere iz liganda u metalni ion s formiranjem organskih radikala i redukcijom iona prijelaznih metala. Nastali u ranim fazama fotoreakcije reducirani oblik metala, organski radikali i radikalni ioni uključeni su u naknadne toplinske reakcije. Nastajanje H<sub>2</sub>O<sub>2</sub> u fotooksidaciji alkohola uz prisutnost molekularnog kisika je neovisno o postupku generiranja •OH radikala. Tako se akumulacija H<sub>2</sub>O<sub>2</sub> uočava tijekom fotooksidacije etanola u vodenim otopinama soli željeza u kojima se generiranje •OH radikala vrši pomoću unutarnjih fotoinduciranih vodenih Fe<sup>3+</sup> iona. To se prvenstveno odnosi na oksidaciju organske tvari hidrosfere u sustavu Fe<sup>2+</sup> (Fe<sup>3+</sup>)-H<sub>2</sub>O<sub>2</sub>-UV (Fentonov sustav) koji se naširoko koristi u fotokemijskim metodama obrade vode. Fentonova oksidacija reagenska s dodatnim izlaganjem UV zračenja jedan je od najperspektivnijih načina pročišćavanja otpadnih voda. Supstrati i produkti intermedijarnog uništavanja koji tvore komplekse sa Fe<sup>3+</sup> mogu djelovati kao sredstvo za senzibilizaciju svjetlosti. Učinak svjetla nastaje u sustavu, relativno zbog visoke koncentracije aktivnog katalizatora  $Fe^{2+}$  iona.

$$FeOH^{2+} + hv \longrightarrow Fe^{2+} + \bullet OH$$
 (6)

$$LFe^{3+} + hv \longrightarrow Fe^{2+} + \bullet L$$
 (7)

Fotoaktivni ioni su  $\text{Fe}^{3+}$ ,  $\text{FeOH}_2$ , i  $\text{Fe}_2(\text{OH})_2^{4+}$  čiji se doprinos određuje pomoću pH vrijednosti i valne duljine korištenog izvora svjetlosti. Kada je kvantni prinos u fotooksidaciji liganda veći nego u reakciji (7), taj proces će prevladati. Fotoredukcija  $\text{Fe}^{3+}$  koji je u obliku kompleksa, s limunskom i oksalno kiselinom u području blizu UV zračenja nastavlja s visokim kvantnim prinosima. U procesima koji se odvijaju u sustavu  $\text{H}_2\text{O}_2\text{-Fe}^{2+}$ - hv, moramo također razmotriti nastavak procesa s visokim kvantnim prinosom fotoinducirane razgradnje kompleksnih iona  $[\text{Fe}(\text{OH})(\text{HO})_2]^+$  da bi se formirali radikali hidroperoksida koji su slabiji od hidroksilnih radikala.

$$[Fe(OH)(HO)_2]^+ + hv \longrightarrow [Fe(OH)]^+ + \bullet HO_2 \qquad (8)$$

Ovaj proces se "natječe" s oksidacijom organskih spojeva na bazi  $Fe^{3+}$  iona, što smanjuje učinkovitost samog procesa pročišćavanja. Uništavanje mikroonečišćujućih tvari u oba slučaja se povećava s porastom temperature i padom pH vrijednosti [13].

#### 2.2.2. Heterogena fotokataliza

Prednosti heterogene fotokatalize su jednostavnost, učinkovitost i mogućnost korištenja sunčeve svjetlosti. Većina istraživanja razmatra heterogene sustave temeljene na visoko dispergiranom titanovom dioksidu (TiO<sub>2</sub>) s kristalnom modifikacijom anatasa. TiO<sub>2</sub> je visoko aktivan, jeftin, netoksičan i kemijski stabilan proizvod koji se dobiva prilikom proizvodnje teških metala. Fotokatalitička svojstva TiO<sub>2</sub> određena su svojstvima njegove elektroničke

strukture, odnosno postojanjem valencija i zone provodnosti u njemu. Kada se apsorbira kvant svijetla, slobodni elektron (e) i elektronska praznika formiraju rupe koje se rekombiniraju ili migriraju u poluvodiču koji je djelomično lokaliziran na strukturnim defekntim centrima njegove kristalne rešetke:

$$TiO_2 + hv \longrightarrow TiO_2 (e^- + h^+)$$
(9)

Vjerojatnost prijenosa elektrona u sustav PC-adsorbanata (oksidanska, supstrata) određena je relativnim položajem zone valencije i provodljivosti PC-a i vrijednosti oksidacijsko-redukcijskog potencijala oksidansa i podloge. Na slici 2 prikaz je kemijske fotogeneracije početnih oksidacijskih sredstava na površini  $TiO_2$  u prisutnosti spojeva elektrona-donora (D) i elektrona-akceptora (A) [13].



Slika 2. Kemijska fotogeneracija početnih oksidacijskih sredstava na površini TiO<sub>2</sub> [13].

Oksidacijko-redukcijski potencijal oksidacije vode, hidroksilnih iona i većine organskih spojeva u širokom rasponu pH vrijednosti je ispod fotoregeneriraanih šupljina, pri čemu se na površini stvaraju hidroksilni radikali i organski kationski radikali:

$$H_2O_{ads} + h^+ \longrightarrow HO_{ads} + H^+$$
(10)

$$OH_{ads}^{-} + h^{+} \longrightarrow \bullet HO_{ads}$$
 (11)

$$\mathbf{R}_{ads} + \mathbf{h}^{+} \longrightarrow \mathbf{R}^{++}_{ads} \tag{12}$$

Redoks potencijal za elektrone kondukcije iznosi – 0,52 V, što je dovoljno negativno da se iz vode izvuče vodik. Međutim, ako i nakon hvatanja, značajan broj elektrona još uvijek je u stanju reducirati kisik na superoksidne radikale  $O_2^{-1}$  ili na vodikov peroksid. Ovisno o uvjetima, šupljine, OH • i  $O_2^{-1}$  radikali,  $H_2O_2$  i  $O_2$  mogu imati glavnu ulogu u mehanizmima

fotokatalitičke reakcije. Redukcija kisika elektronima rezultira stvaranje superoksida, hidroperoksid radikala i vodikovog peroksida:

$$O_{2,ads} + e^{-} \longrightarrow O_{2,ads}^{-}$$
 (13)

$$O^{\bullet}_{2,ads} + H^{+} \longrightarrow HO^{\bullet}_{2,ads}$$
(14)

$$O_{2,ads} + 2e^{-} + 2H^{+} \longrightarrow H_2O_{2,ads}$$
(15)

Tijekom interakcije hidroperoksidnih radikala i rekombinacije hidroksilnih radikala nastaje vodikov peroksid:

$$2\text{HO'}_{2,\text{ads}} \longrightarrow \text{H}_2\text{O}_{2,\text{ads}} + \text{O}_2 \tag{16}$$

$$2HO'_{2,ads} \longrightarrow H_2O_{2,ads}$$
(17)

Pod djelovanjem UV svjetla (<300 nm), vodikov peroksid disocira uz nastanak hidroksilnih radikala:

$$H_2O_{2,ads} + hv \longrightarrow 2HO_{ads}$$
(18)

Vodikov peroksid je učinkovit čistač fotogeneriranih elektrona:

$$H_2O_2 + e^- \longrightarrow HO^+ + HO^-$$
 (19)

Fotokatalitički proces provodi se izravnom oksidacijom supstrata pomoću šupljina  $TiO_2$  na površini i oksidacijom mikroonečišćenja visoko aktivnih kisikovih radikala u sloju otopine koji u blizini  $TiO_2$ [13].

#### 2.3. Mehanizam i osnove fotokatalitičkih reakcija

Heterogena fotokataliza korištenjem UV/TiO<sub>2</sub> jedan je od najčešćih fotokatalitičkih procesa i temelji se na adsorpciji fotona s energijom većom od 3,2 eV (valne duljine niže od 390 nm), što rezultira inicijacijskom pobudom koja je povezana s razdvajanjem naboja. Generiranje pobuđenih visokonaponskih parova elektrona i šupljina javlja se kada su široko pojasni poluvodiči ozračeni više od energije zračenja. To rezultira pomicanjem elektrona u vidljivom pojasu ( $e_{CB}$ ) i stvaranje pozitivne šupljine u valentnom pojasu ( $h_{VB}^+$ ) (19).  $h_{VB}^+$  i  $e_{CB}^-$  su snažni oksidacijski i redukcijski agensi.  $h_{VB}^+$  reagira s organskim spojevima što rezultira njihovom oksidacijom te nastajanje CO<sub>2</sub> i H<sub>2</sub>O kao krajnjih produkata (20).  $h_{VB}^+$  također može oksidirati organske spojeve reakcijom s vodom kako bi nastao 'OH (21). Hidroksil radikal ('OH) koji je proizvedem ima drugi najveći oksidacijski potencijal (2,80 V) koji je tek neznatno niži od najjačeg oksidanta, floura. Zbog svoje elektrofilne prirode, 'OH može neselektivno oksidirati gotovo sve molekule bogate elektronima, pretvarajući ih u CO<sub>2</sub> i H<sub>2</sub>O.

$$TiO_2 + hv (<387 \text{ nm}) \longrightarrow e_{CB}^- + h_{VB}^+$$
(20)

$$h_{VB}^{+} + R \longrightarrow CO_2 + H_2O$$
 (21)

 $H_2O + h_{VB}^+ \longrightarrow OH + H^+$  (22)

$$OH + R \longrightarrow CO_2 + H_2O$$
 (23)

Gdje R predstavlja organski spoj.

Vodljivi pojas može reagirati s O<sub>2</sub>, formirajući anionski radikal superoksid, kako je prikazano u jednadžbi 23.

$$e_{CB} + O_2 \longrightarrow O_2^{\bullet}$$
 (24)

Daljnja reakcija može dovesti do stvaranja vodikovog peroksida koji dovodi do stvaranja 'OH. Mehanizam stvaranja rupičastih parova pri ozračivanju TiO<sub>2</sub> prikazan je na slici 3 [14].



**Slika 3.** Mehanizam stvaranja parova elektron-šupljina u čestici TiO<sub>2</sub> uz prisutnost onečišćenja u vodi [14].

Prisutnost otopljenog kisika iznimno je važna tijekom fotokatalitičke razgradnje jer može otežati proces rekombinacije TiO<sub>2</sub> ( $e_{CB}$  /  $h_{VB}$ ) što rezultira održavanjem elektroneutralnosti TiO<sub>2</sub> čestica. Drugim riječima za djelotvornu fotokatalitičku razgradnju organskih onečišćujućih tvari važno je da se proces redukcije kisika i proces oksidacije onečišćujućih tvari odvijaju istovremeno kako bi se izbjeglo nakupljanje elektrona u provodnom pojasu, jer bi se time smanjila brzina rekombinacije  $e_{CB}$  i  $h_{VB}$ 

#### 2.4. Titanijev dioksid (TiO<sub>2</sub>)

Titanijev dioksid (TiO<sub>2</sub>) dugo se smatrao jednim od najperspektivnijim fotokatalizatorom s zaslugama kao što su visoka reaktivnost, dobra stabilnost, netoksičnost, ekonomičnost, itd., a nanomaterijali TiO<sub>2</sub> uglavnom su primjenjivani u proizvodima za osobnu higijenu, za uređenje interijera sve dok znanstvenici Fujimasha i Honda 1972. godine nisu prvi put upotrijebili TiO<sub>2</sub> elektrodu za fotokatalizu. Od tada, brojni TiO<sub>2</sub> nanomaterijali i kompoziti nanomaterijala na bazi TiO<sub>2</sub> su osmišljeni i sintetizirani. Međutim, nekoliko čimbenika ograničilo je njegovu praktičnu primjenu kao što je valna duljina (3,2 eV za anatas i 3,0 eV za rutil) i brza rekombinacija fotogeneriranih parova elektron - rupa. U posljednjih nekoliko godina uloženi su znatni napori kako bi se modificirala valna duljina TiO<sub>2</sub> i kako bi se pojačala njegova fotokatalitička aktivnost pri osvjetljenju vidljivim svijetlom; na primjer: doping, uvođenje atoma ili spojeva u TiO<sub>2</sub> matricu kako bi se promijenila elektronička struktura za poboljšanje apsorpcije vidljive svjetlosti i poboljšanje prijenosa nosača naboja. Što se tiče dopinga, može se raditi doping metalnih elemenata (kao što su Fe, Co, Cr, Ni i Mo), ili nemetalnih elemenata (poput N, C, F i S), kombiniranje metalnih i nemetalnih elemenata (kao što su Mo + C, Fe + N, Mo + S i Co + N, S), samo-doping (uvođenje urođenih nedostataka, kao što su slobodna mjesta za kisik i Ti<sup>3+</sup>), spajanje poluvodiča s malim valnim duljinama (poput CdS i ZnO) ili kompoziranje s ugljikovim nanomaterijalima. Sve te metode dopinga mogu pokrenuti aktivnost vidljivog svjetla. Osim toga, modificiranje njihovih faza, morfologije, strukture i poroznosti također može utjecati na njihove fotokemijske aktivnosti.

#### 2.4.1. Strukturna svojstva

Postoje četiri uobičajene kristalne faze  $TiO_2$ : anatas, rutil, brukit i  $TiO_2(B)$  koje su prikazane na slici 4 [15].



Slika 4. Kristalne strukture TiO<sub>2</sub> u različitim fazama: (a) anatas, (b) rutil, (c) brukit i (d) TiO<sub>2</sub>(B) [15].

Kao što je prikazano na slici 4 sve ove faze sastoje se od TiO<sub>6</sub> oktaedra, ali se razlikuju u oba izobličenja njihovih oktahedriskih jedinica i način na koji dijele rubove i uglove. Za anatas, četiri od osam susjednih oktaedara dijele rubove, ostali dijele kutove. Oktaedar koji dijeli ugao tvori ravnine i njihovi rubovi se povezuju s ravninom oktaedra ispod. U rutilu oktaedarska struktura dijeli dva ruba i osam uglova. Različiti strukturni rasporedi rezultiraju različitim prostornim skupinama. Za brukit, oba ugla i rubovi su povezani. TiO<sub>2</sub>(B) uglavnom potječe od slojevitog titana. Struktura TiO<sub>2</sub>(B) sastoji se od valovitih listića koji se sastoje od rubova i uglova njih dijeli oktaedar TiO<sub>6</sub> [15].

#### 2.4.2. Elektronska svojstva

Detaljno se proučava elektronska struktura TiO<sub>2</sub> koristeći *ab intio* metodologiju. Razlike rešetkaste strukture anatasa i rutila uzrokuju različite gustoće i strukturu elektronskih traka, što dovodi do različitih valnih duljina. Za osnovne materijale, širina valne duljine za anatas TiO<sub>2</sub> je približno 3,20 eV (što odgovara 384 nm), a širina valne duljine za rutil iznosi 3,02 eV (što odgovara 410 nm). Elektronska struktura obje faze TiO<sub>2</sub> može se objasniti pomoću molekularne teorije. Na vrhu maksimuma valentnog pojasa nevezana je orbitala O p (izvan ravnine Ti<sub>3</sub>O klastera), a na dnu maksimuma valentnog pojasa nevezana Ti dxy stanja. Za rutil, Ti dxy orbitale na dnu maksimuma valentnog pojasa relativno su izolirane, dok t<sub>2g</sub> orbitale valentnog pojasa osiguravaju metal-metal interakciju sa manjom udaljenosti od 2,96 Å. Širina valne duljine anatasa manja je od rutila, što rezultira neznatno širim opsegom od 3,2 eV u odnosu na 3,0 eV za rutil [15].

#### 2.5. Fotokatalitički kopmoziti ugljične nanocijevi (CNT) – TiO<sub>2</sub>

Kompozitni sustav ugljikove nanocijevi – titanov dioksid (CNT - TiO<sub>2</sub>) koriste se u mnogim primjenama uključujući njihovu uporabu za rješavanje problema zaštite okoliša. TiO<sub>2</sub> je uvijek bio jedan od boljih materijala korištenih prilikom fotokatalize zbog svojih fotokatalitičkih svojstava. Obično se koriste dva TiO<sub>2</sub> polimorfa – anatas i rutil. Anatas faza pokazuje znatno veću fotokatalitičku aktivnost od rutil faze. CNT ima izvrsna mehanička svojstva i veliku specifičnu površinu (> 150 m<sup>2</sup> g<sup>-1</sup>). Također omogućuju površinske kemijske modifikacije za kontrolu vrste veze koje mogu ostvariti s titanom, bilo da su kemijske veze ili van der Waals veze. Mješavina titana i CNT-a također ima veliku površinu na koju se zagađivači (organski ili anorganski) mogu adsorbirati [16].

#### 2.5.1. Fotokataliza CNT-a i TiO<sub>2</sub>

Osim uvođenja različitih nepravilnosti na površinu kako bi se osigurale zamke za elektrone, još jedna učinkovitija metoda povećava vrijeme rekombinacije za parove elektron šupljina kako bi se formirali spojevi poluvodiča i metala koji se nazivaju Schottky barijera, gdje postoji područje razdvajanja prostora i naboja. Na sučelju dva materijala, elektroni teku iz jednog materijala u drugi (od višeg do nižeg nivo) kako bi se uskladile Fermijeve razine energije. U slučaju metala s višom radnom funkcijom u odnosu na poluvodič n – tipa, kao što je TiO<sub>2</sub>, elektroni će prelaziti iz poluvodiča u metal kako bi se podesila Fermijeva razina energije. Formiranje Schottky – ove barijere rezultira time da metal ima višak negativnog naboja, a poluvodič višak pozitivnog naboja. Između je sloj iscrpljivanja koji održava odvajanje naboja. CNT - ovi imaju mnoštvo elektronski svojstava te veliku sposobnost skladištenja elektrona pa mogu prihvatiti fotone pobuđene elektronima u mješavinama ili nanokompozitima i usporiti ili ometati rekombinaciju. Parovi elektron - šupljina koji su generirani fotonima imaju vrijeme rekombinacije 10<sup>-9</sup> s, međutim kemijska interakcija s adsorbiranim vrstama onečišćujućih tvari ima vrijeme od 10<sup>-8</sup> do 10<sup>-3</sup> s. CNT – i također pružaju veću specifičnu površinu sličnu aktivnom ugljenu i na taj način povećavaju fotokatalitičku razgradnju. Anatas TiO<sub>2</sub> zahtjeva UV svjetlost kako bi pobuđivao elektron s dovoljno energije. UV spektar predstavlja samo 5% ukupnog spektra sunčeve svjetlosti. CNT - ovi mogu izlagati fotosenzibilizirajuća svojstva, njime se fotokataliza proširuje u vidljivi spektar. Dva problema nanofotokatalizatora koja je potrebno riješiti su poteškoće u distribuciji pojedinih čestica i njihovo skupljanje nakon uporabe te su potrebne potporne strukture. Moguća su dva pristupa: a) njihovo umetanje u matricu ili b) pričvršćivanje na magnetne čestice. Prvi pristup može se postići elektrospiniranjem nanovlakana koja sadrže titan i CNT. Tako se dobivaju materijali od nanofaibera koji imobiliziraju materijale. U drugom pristupu kompoziti CNT – TiO<sub>2</sub> mogu biti napravljeni magnetski primjenom CNT – a napunjenih željezom. Magnetske čestice mogu se dispregirati magnetskim fluidiziranim slojem [16].

#### 2.5.2. Mehanizmi unapređenja fotokatalize s CNT – TiO<sub>2</sub> kompozitima

Razmatraju se dva mehanizma poboljšanja fotokatalitičkih svojstava  $CNT - TiO_2$  kompozita. Prvi je modificirani mehanizam te u njemu visokoenergetski foton pobuđuje elektron iz valentnog pojasa prema provodnom pojasu anatasa  $TiO_2$ . Fotogenirani elektroni formirani u prostorima napajanja prelaze u CNT, a na  $TiO_2$  ostaju šupljine koje sudjeluju u redoks reakcijama. Shema ovog mehanizma prikazana je na slici 5 a). Kod drugog mehanizma

CNT djeluje kao senzibilizator i prenosi elektrone na TiO<sub>2</sub>. Fotogenirani elektron ubrizgava se u provodni pojas TiO<sub>2</sub> koji omogućava stvaranje superoksidnih radikala koji su adsorbirani molekularnim kisikom. Jednom kada se to dogodi pozitivno nabijene nanocijevi uklanjaju elektron iz valentnog pojasa TiO<sub>2</sub> ostavljajući šupljinu. Tada pozitivno nabijeni TiO<sub>2</sub> može reagirati sa adsorbiranom vodom i tvoriti hidroksilne radikalne. Ovaj mehanizam prikazan je na slici 5 b). Međutim nanokompozitni sustav CNT – TiO2 pokazao se složenijim. Postoje dva različita doprinosa CNT – TiO<sub>2</sub> kompozita. Jedan doprinos je veza ugljik – kisik – titan koja proširuje apsorpciju svjetlosti na veće valne duljine, to je slično titanu kojemu je doziran ugljik te se na taj način poboljšava fotokatalitička aktivnost. Drugi doprinos je elektronska konfiguracija CNT - a. CNT - ovi nastali lučnim pražnjenjem i CVD - postupkom obložena su TiO<sub>2</sub> pomoću sol – gel postupka. Iako su oba nanokompozita strukturno slična, brzina razgradnje fotokatalitičke boje za CNT – ove sa lučnim pražnjenjem deset puta je veća nego za CNT nanokompozit nastao CVD - postupkom. Nanocijevi mogu djelovati kao primjese u Ti – O – C vezama što se može vidjeti na slici 5 c). Razlika u aktivnosti prepisuje se elektronskoj prirodi CNT – a. Ramanska spektroskopija pokazuje kako CNT – ovi koji se sinteriraju lučnim pražnjenjem imaju veću električnu vodljivost i manje oštećenja. Što se fotokatalize tiče, struktura elektronskih vrpci CNT – a važniji je faktor nego kemijske veze između CNT – a i TiO<sub>2</sub>[16].



Slika 5. Mehanizmi unapređenja CNT – a fotokatalize [16].

Na slici 5 pod a) CNT – ovi djeluju kao elektroni i pročišćavaju elektrone koji ometaju rekombinaciju. Pod b) foton stvara par elektron – šupljina u CNT – u. Na temelju relevantnih položaja pojaseva, u titanu se ubrizgava elektron (ili šupljina) koja generira  $O_2^-$  ili OH<sup>•</sup>. Pod c) nanocijevi mogu djelovati kao primjese u Ti – O – C vezama [16].

#### 2.6. Salicilna kiselina kao farmaceutik

U ovom radu praćena je razgradnja salicilne kiseline kao modalni primjer farmaceutika. Salicilna kiselina ili orto-hidroksibenzojeva kiselina ( $C_6H_4(OH)COOH$ ) je antipiretički i analgetički lijek te zajedno sa srodnim spojevima pripada raznovrsnoj skupini biljnih fenola. Salicilati iz biljnih izvora koriste se u lijekovima još od antičkih vremena [17]. Riječ salicilna kiselina dolazi od latinske riječi '*salix*" što u prijevodu znači vrba. Na slici 6 prikazana je kemijska struktura salicilne kiseline [7].



Slika 6. Prikaz kemijskog sastava salicilne kiseline [18].

Salicilna kiselina je kristalni prah koji se tali na 175-159 °C, umjereno je topiva u vodi i vrlo je topiva u polarnim organskim otapalima, a pH vrijednost salicilne kiseline je 2,4. Salicilna kiselina može se aktivno transportirati, metabolizirati ili konjugirati, a također se može premjestiti od točke početne primjene u različita biljna tkiva. Korištenjem moderne antičke tehnike utvrđeno je da se salicilati distributiraju u mnogim važnim vrstama poljoprivrednih biljaka. U mnogim biljkama, poput riže, ječma, soje, utvrđeno je da su razine salicilne kiseline približno 1 mg g<sup>-1</sup> [17]. Salicilna kiselina sintetski se može dobiti zagrijavanjem natrijevog fenolata s ugljičnim dioksidom pod tlakom, a ujedno se može dobiti i mikrobnom oksidacijom naftalena. Salicilna kiselina bezbojna je boje ili može biti u obliku bijelih kristala. Sintetski oblik je bijele boje, no kada je pripravljena pomoću prirodnog metil salicilata može biti lagano rozog ili žutog obojenja. Najveću prisutnost salicilna kiselina ima u farmaceutskim i kozmetičkim proizvodima. Može se koristi i za proizvodnju aspirina, kao analitički reagens, kao intermedijer u proizvodnji bojila i kao inhibitor vulkanizacije. Proizvodnja i uporaba salicilne kiseline može rezultirati ispuštanjem u okoliš. Fotolitičkom oksidacijom salicilna kiselina može se potpuno ili djelomično mineralizirati, odnosno razgraditi do CO<sub>2</sub> i H<sub>2</sub>O. Prilikom razgradnje, salicilna kiselina se raspada na nekoliko međuprodukata, kao što su rezorcinol, katehol, fenol, galna kiselina, benzojeva kiselina i CO<sub>2</sub> [7].

### 3. EKSPERIMENTALNI DIO

#### 3.1. Materijali

U eksperimentalnom dijelu materijali koji su korišteni su sljedeći:

- Titanijev dioksid (TiO<sub>2</sub>) (Aeroxide® P25, Evonik, Njemačka)
- Destilirana voda
- Etanol (Kemika, Hrvatska)
- Octena kiselina (Kemika, Hrvatska)
- Tetraetoksisilan (TEOS, VWR Cemical, SAD)
- Ugljične nanocijevi MWCNT (eng. Multiwalled carbon nanotubes)
- Staklene mrežice (CM 300/300,  $\rho = 610 \text{ g/m}^2$ )

#### 3.2. Metoda pripreme i nanošenja fotokatalizatora

Imobilizirani sloj se priprema korištenjem TiO<sub>2</sub> i MWCNT koji se nanosi na staklenu mrežicu sol-gel metodom. Staklene mrežice pripremljene su tako da su izrezane na dimenziju reaktora te su izvagane. Suspenzija je pripremljena miješanjem TiO<sub>2</sub> i MWCNT s različitim udjelima višestjenih ugljičnih nanocijevi s destiliranom vodom i etanolom na magnetnoj miješalici gdje je omjer vode i etanola 1:1 te se TiO<sub>2</sub> i MWCNT iz suspenzije nanosi na staklenu mrežicu. Dodavanjem octene kiseline uz miješanje podešavana je pH vrijednost suspenzije do pH 1,5-2. Kada se postigla željena pH vrijednost nastavilo se miješanje suspenzije u periodu od 15 min. Nakon toga provedena je homogenizacija ultrazvukom u trajanju od 3 minute pomoću ultrazvučne kupelji (snaga 120 W, frekvencija 40 kHz). Zatim slijedi dodavanje tetraetoksisilana te daljnje miješanje u periodu od 60 minuta pri temperaturi od 50 °C. Staklene mrežice uranjane su u pripremljenu suspenziju te su sušene. Sušenje se provodilo u sušioniku na 70 °C 30 minuta. Postupak uranjanja i sušenja ponovljen je 4 puta. Pripremljene mrežice ostavljene su 7 dana na zraku, te su potom isprane destiliranom vodom, osušene i izvagane kako bi se odredila masa nanesenog sloja. Čiste mrežice i mrežice sa TiO<sub>2</sub>/MWCNT koje su dobivene opisanim postupkom snimane su pretrežnim elektronskim mikroskopom (SEM, TESCAN VEGA 5136MM) koji je opremljen detektorom za energijsku disperzivnu rendgensku spektroskopiju (EDS) kako bi se ispitao kemijski sastav. Fotokatalitička svojstva katalizatora ispitana su razgradnjom salicilne kiseline (SA, Kemika, Hrvatska) u pripremljenoj 0,2 mmol/dm<sup>3</sup> modalnoj otopini.

#### 3.3. Reaktor za ispitivanje fotokatalitičkih svojstava

Ispitivanje fotokatalitičkih svojstava provodila su se u šaržnom pilot fotoreaktoru (slike 7-9) pravokutne dimenzije (4,5 x 17,5 cm) uz recirkulaciju pomoću peristaltičkih pumpi s protokom od 48 cm<sup>3</sup>/min (slika 8.). Izvor sunčevog zračenja (UV-B 2% / 13 W) postavljen je neposredno (7 cm) iznad površine reakcijske otopine te je ujedno natkriven sjenilom/reflektivnom površinom od Al-lima s ciljem ravnomjernog osvjetljivanja reaktorskog prostora. Staklena mrežica s imobiliziranim fotokatalizatorom postavi se na dno reaktora te se doda modalna otopina salicilne kiseline 100 cm<sup>3</sup>. Prilikom početka postupka uzima se uzorak salicilne kiseline 2 cm<sup>3</sup> te se nakon toga reaktor ostavlja u mraku 30 minuta.

Nakon 30 minuta ponovo se uzima uzorak. Kada je završena faza u mraku, uključuje se izvor simuliranog sunčevog zračenja i uzorci se uzimaju periodički 15, 30, 60 i 90 minuta.



Slika 7. Prikaz pilot fotoreaktora.



**Slika 8.** a) prikaz peristaltičkih pumpi, b) prikaz reaktora.



Slika 9. Prikaz izvora simuliranog sunčevog zračenja.

### 3.4. Mrežica nakon nanošenja fotokatalizatora

Na slikama 10-15 su prikazane mrežice nakon postupka nanošenja fotokatalizatora s različitim udjelima ugljikovih nanocijevi.



Slika 10. Prikaz mrežice sa 1,5 % ugljikovih nanocijevi.



Slika 11. Prikaz mrežice sa 5 % ugljikovih nanocijevi.



Slika 12. Prikaz mrežice sa 10 % ugljikovih nanocijevi.



Slika 13. Prikaz mrežice sa 25 % ugljikovih nanocijevi.



Slika 14. Prikaz mrežice s 50 % ugljikovih nanocijevi.



Slika 15. Prikaz mrežice sa 100 % ugljikovih nanocijevi.

### 3.5. UV/VIS spektrofotometrija

UV/VIS spektrofotometrom Perkin Elmer LAMBDA 35, 200-700 nm uz brzinu snimanja od 480 nm/min (slika 16) pratila se razgradnja salicalne kiseline.



Slika 16. Prikaz spektrofotometra.

### 3.6. Skenirajuća elektronska mikroskopija (SEM)

Skenirajućom elektronskom mikroskopijom dobiven je uvid u mikrosturkturu čiste staklene mrežice i mrežice na kojoj je imobiliziran  $TiO_2$  i  $TiO_2/MWCNT$ . Čiste staklene mrežice i mržice sa imobiliziranim slojem su naparene Au/Pd slojem te su snimane pod povećanjem od 1000 puta, EDS analiza je rađena pri naponu od 20 kV i udaljenosti od 20 mm (slika 17).



Slika 17. Prikaz skenirajućeg elektronskog misroskopa.

### 4. REZULTATI I RASPRAVA

Na slici 18 prikazani su rezultati skenirajuće elektronske mikroskopije gdje pod a) vidljiv prikaz čiste mrežice dok je pod b) prikaz mrežice na kojoj je imobiliziran  $TiO_2$ . Iz slike se može zaključiti da je došlo do vezanja fotokatalizatora  $TiO_2$  na staklene mrežice. Na prethodno danim slikama od 10 do 15 prikazani su rezultati imobilizacije  $TiO_2$  i MWCNT u različitim udjelima MWCNT u odnosu na masu  $TiO_2$ . Prema boji mrežica vidljivo je da je došlo do vezanja MWCNT te mrežice sa većim udjelom su tamnije od onih sa nižim udjelom MWCNT-a.



Slika 18. Prikaz skenirajuće elektronske mikroskopije mrežica.

Prisutnost TiO<sub>2</sub>/MWCNT utvrđena je pomoću EDS analize nakon imobilizacije. Rezultati EDS analize prikazani su na slikama 19 i 20 gdje je zelenom crtom označeno područje u kojem se analiza provodila. Iz EDS analize vidljivo je da je prisutan i ugljik što potvrđuje da je došlo do vezanja MWCNT-a, iako je to vidljivo i golim okom zbog boje samih pripremljenih fotokatalizatora.



Slika 19. SEM slika područja provedene analize, mrežice na koju je imobiliziran  $TiO_2$  i MWCNT.



Slika 20. Prikaz EDS analize.

| Koncentracija | m (čista    | m (staklena                | m              |
|---------------|-------------|----------------------------|----------------|
| MWCNT         | staklena    | mrežica +                  | (imobilizirani |
|               | mrežica)/ g | TiO <sub>2</sub> /MWCNT)/g | sloj)/g        |
| 1.5 %         | 6,4251      | 6,6492                     | 0,2241         |
| 5 %           | 4,5922      | 4,8158                     | 0,2236         |
| 10 %          | 5,9035      | 6,1226                     | 0,2191         |
| 25 %          | 7,5188      | 7,6999                     | 0,1811         |
| 50 %          | 5,7496      | 6,1090                     | 0,3594         |
| 100 %         | 5,4641      | 5,9050                     | 0,4409         |

Tablica 2. Masa imobiliziranog sloja

Usporedbom rezultata koji su dani u tablici 2 i slici 21 vidi se da fotokataliza ne ovisi o masi imobiliziranog sloja, već o udjelu MWCNT-a.

Na slici 21 prikazana je razgradnja salicilne kiseline pomoću fotokatalizatora sa različitim udjelima MWCNT-a.



Slika 21. Određivanje optimalnog udjela ugljikovih nanocijevi.

Iz rezultata se može zaključiti da je najbolji udio MWCNT-a 5 % jer razgradnja salicilne kiseline tada dostiže najveći stupanj, odnosno konverziju koja na kraju postupka iznosi 0,77. Kod ostalih ispitivanih udjela MWCNT-a dolazi do slabije razgradnje salicilne kiseline. Udio MWCNT od 1,5 % ima bolja fotokatalitička svojstva od čistog TiO<sub>2</sub> dok povećanjem udjela MWCNT većim od 5 % dolazi do smanjenja fotokatalitičke aktivnosti, koja je i slabija nego kod uporabe čistog TiO<sub>2</sub>.

## 5. ZAKLJUČAK

Iz dobivenih rezultata može se zaključiti:

- Fotokatalizator TiO<sub>2</sub>/ugljikove nanocijevi veže se na staklene mrežice sol-gel postupkom, što je vidljivo i golim okom po boji fotokatalizatora.
- SEM/EDS analizom dokazala se prisutnost ugljika što potvrđuje vezanje MWCNT-a na staklene mrežice.
- Ispitano je kako udio MWCNT utječe na fotokatalitička svojstva TiO<sub>2</sub>, pripremljeni su se fotokatalizatori s različitim udjelima MWCNT (1,5, 5, 10, 25, 50, 100 %) u odnosu na masu TiO<sub>2</sub> te se utvrdio da je optimalan udio ove vrste ugljičnih nanocijevi 5 %.
- Uporabom fotokatalizatora sa 5 % MWCNT došlo je do poboljšanja razgradnje za 14 % u usporedbi sa čistim TiO<sub>2.</sub>
- Povećanje udjela MWCNT (10, 25, 50, 100 %) negativno utječe na fotokatalitička svojstva TiO<sub>2</sub>, jer je vidljivo da dolazi do slabije razgradnje salicilne kiseline.

### 6. LITERATURA

- 1. Zrnčević S., Farmaceutici i metode obrade otpadne vode iz farmaceutske industrije, Hrvatske vode, 24 (2016) 119-136.
- 2. Črnek N., Onečišćenje i zaštita vode, Završni rad, Veleučilište u Karlovcu, 2018.
- 3. Novaković K., Ocjena efikasnosti fotokatalitičke razgradnje bojila sa pani/TiO<sub>2</sub> nanokompozitom, Diplomski rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2016.
- 4. Jajčinović I, Borošić M., Brnardić I., Grčić I., Kurajica S.: Usporedba priprave fotokatalizatora nanošenjem TiO<sub>2</sub> na nosač različitim metodama, 17th International Foundrymen Conference, Proceedings book, Sveučilište u Zagrebu Metalurški fakultet, 2018. 135-143.
- Luo Y., Guo W., Hao Ngo H., Duc Nghiem L., Ibney Hai F., Zhang J., Liang S., C. Wang X.: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of the Total Environment, 473-474 (2016) 619-641.
- 6. Štrk A., Fotokatalitička razgradnja salicilne kiseline s imobiliziranim TiO<sub>2</sub>, Diplomski rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2015.
- 7. Borovac M., Imobilizacija TiO<sub>2</sub> na čvrsti nosač-karakterizacija i fotokatalitička aktivnost, Diplomski rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2016.
- 8. Kosir D., Utjecaj kemijske regeneracije TiO<sub>2</sub>/FeZSM5 na učinkovitost fotokatalitičke razgradnje diklorfenaka u vodi pod simuliranim sunčevim zračenjem, Završni rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2015.
- 9. Pađan, J., Izvedba reaktora za pročišćavanje vode poluvodičkom fotokatalizom, Diplomski rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2014.
- 10. Vujević D., Uklanjanje organskih tvari iz obojenih otpadnih voda primjenom naprednih oksidacijskih procesa, Doktorska disertacija, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2007.
- 11. Tašić A., Fotokatalitička razgradnja azo bojila uz poli(3,4-etilendioksitiofen)/ZnO nanokompozitni fotokatalizator, Završni rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2016.
- Prelog M., Sinteza i karakterizacija leteći pepeo/TiO<sub>2</sub> fotokatalitičkih nanokompozita, Završni rad, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, 2015.
- 13. Prihod'ko V. R., Soboleva M. N.: Photocatalysis: Oxidative processes in water tretment, Journal of Chemistry, (2013) 1-8.
- 14. Umar M., Aziz Abdul H.: Photocatalytic degradation of organic pollutants in water, Organic Pollutants-Monitoring, Risk and Treatment, 8 (2013) 196-197.
- Liu Y., Li Z., Green M., Just M., Li Yang Y., Chen X.: Titanium dioxide nanomaterials for photocatalysis, Journal of Physics D: Applied Physics, 50 (2017) 1-8.
- 16. Woan K., Pyrgiotakis G., Sigmund W.: Photocatalytic Carbon-Nanotube-TiO<sub>2</sub> Composites, Advanced Materials, 21 (2009) 2233-2235.
- 17. Popova L., Pancheva T., Uzunova A.: Salicylic acid: Properties, Biosynthesis and Physiological role, Bulgarian Journal of Plant Physiology, 23 (1997) 85-93.
- 18. https://blackwolfnation.com/blogs/news/wtf-is-salicylic-acid (20.8.2019.)

# 7. ŽIVOTOPIS

### Osobni podatci:

Ime i Prezime: Tea Čavrak Datum i mjesto rođenja: 12.04.1995., Sisak, Republika Hrvatska Adresa: I. B. Mažuranić 1, Sisak e-mail: <u>1204tea@gmail.com</u>

### **Obrazovanje:**

- 2017. Diplomski studij Metalurgija, smjer Industrijska ekologija, Sveučilište u Zagrebu, Metalurški fakultet
- 2014. 2017. Preddiplomski studij Metalurgija, smjer Industrijska ekologija, Sveučilište u Zagrebu, Metalurški fakultet
- 2010. 2014. Tehnička škola Sisak