ZBORNIK RADOVA - PROCEEDINGS

23. Međunarodno savjetovanje o zaštiti materijala i industrijskom finišu
23rd International conference of materials protection and industrial finish

KORMAT 2018

- In memoriam prof. Ivan Esih -

435th Event of the European Federation of Corrosion

Urednici / Editors: Ivan Stojanović, Vinko Šimunović, Biserka Runje

Organizator savjetovanja / Conference organized by:
HRVATSKO DRUŠTVO ZA ZAŠTITU MATERIJALA
CROATIAN SOCIETY FOR MATERIALS PROTECTION

Impresum

23. Medunarodno savjetovanje o zaštiti materijala i industrijskom finišu
„KORMAT 2018“ – In memoriam prof. Ivan Esih

23rd International conference of materials protection and industrial finish
„KORMAT 2018“ – In memoriam prof. Ivan Esih

ZBORNIK RADOVA HRVATSKOG DRUŠTVA ZA ZAŠTITU MATERIJALA
PROCEEDINGS OF THE CROATIAN SOCIETY FOR MATERIALS PROTECTION

Nakladnik / Publisher
Hrvatsko društvo za zaštitu materijala, Ivana Lučića 1. 10000 Zagreb

Urednici / Editors
Doc. dr. sc. Ivan Stojanović, Doc. dr. sc. Vinko Šimunović, Prof. dr. sc. Biserka Runje

Recenzija / Review
Radovi su pregledani i prihvaćeni od strane programskog odbora.
Papers are reviewed and accepted by the Program Committee.

Oblikovanje / Designed by
Doc. dr. sc. Ivan Stojanović

Naklada / Edition
50 primjeraka

Adresa uredništva / Address of the Editorial Bord
Hrvatsko društvo za zaštitu materijala, Ivana Lučića 1. 10000 Zagreb
Tel./fax.: 01 6168 343
hdzama@fsb.hr
www.fsb.unizg.hr/hdzama

ISSN 1848-4255

Struktura osnovnog crtičnog koda: 9771848425003

Copyright © Zabranjeno umnožavanje bez prethodnog dopuštenja nakladnika.
PROGRAMSKI ODBOR / PROGRAM COMMITTEE

Ivan Juraga HR
Vesna Alar HR
Johann Wilhelm Erming DE
Angelika Becker DE
Ivan Stojanović HR
Helena Otmačić Ćurković HR
Vinko Simunović HR
Jadranka Malina HR
Marijana Serdar HR
Stjepan Aračić HR
Biserka Runje HR
Frankica Kapor HR
Sanja Martinež HR
Dubravka Bjegović HR
Časlav Lačnjevac SRB
Miomir Pavlović SRB
Tadeja Kosec SLO
Veselinka Grudić MNE
Loreta Pomenić HR
Marin Kurtela HR
Ana Baričević HR
Gordana Pustaj HR
Antonio Ivanković HR
Robert Ivecović HR
Stjepan Pavliša HR
Krešimir Kekez HR
Karla Rončević HR
Vjera Marić HR
Suzana Jakovljević HR
Goran Rozing HR
Ladislav Vrsalović HR

ORGANIZACIJSKI ODBOR / ORGANIZATION COMMITTEE

Ivan Juraga HR
Vesna Alar HR
Ivan Stojanović HR
Vinko Simunović HR
Dragutin Juraj HR
Marin Kurtela HR
Frankica Kapor HR
Biserka Runje HR
Dubravka Ulaga HR
SADRŽAJ / CONTENTS

1. J. W. Erning
 Release of heavy metals from alloys used in drinking water: How to test and evaluate materials
 Otpuštanje teških metala iz legura korištenih u sustavima pitke vode: Kako ispitati i ocijeniti materijale
 (Predavanje na poziv / Invited lecture) 1-6

2. L. Vrsalović, I. Gotovac, S. Gudić, I. Ivanić, S. Kožuh, B. Kosec, M. Bizjak, T. Holjevac, R. Pezer, M. Gojić
 Corrosion behavior of CuAlNiMn alloy in 0.9% NaCl solution
 Korozijsko ponašanje legure CuAlNiMn u 0.9% NaCl otopini 7-16

3. L. Lokas, V. Alar
 Influence of temperature on electrochemical properties of AA5083 aluminum alloy in seawater
 Utjecaj temperature na elektrokemijska svojstva aluminijarske legure AA5083 u morskoj vodi 17-25

4. M. Kurtela, I. Stojanović, V. Alar, T. Benković
 Influence of CeCl₃ on the oxide coating properties of aluminum alloy AA2024-T3
 Utjecaj Cerij(III)-klorida na svojstva oksidne prevlake aluminijarske legure AA2024-T3 26-40

5. Z. Keran, M. Mihaljević, A. Horvatić Novak, B. Runje
 The impact of the grain size on the ultrasound velocity in the material
 Utjecaj veličine zrna na brzinu ultrazvuka u materijalu 41-47

6. V. Grudić, S. Martinez, B. Knežević
 Corrosion inhibition of steel in NaCl solution by propolis
 Inhibicija korozije čelika u otopini NaCl pomoću propolis 48-57

7. Zhi Feng LIN, Li Kun XU, Xiang Bo LI, Li Wang, Weimin GUO, Chuan Jie WU, Yi YANG
 Corrosion resistance of composite coating used for fastener protection
 Otpornost na koroziju kompozitne prevlake za zaštitu vijčanih spojeva 58-69

8. V. Šimunović, M. Kurtela, I. Stojanović, E. Zvone
 Corrosion properties of aluminum alloy AA2024-T3 after immersion in NaCl aqueous solution with CeCl₃
 Korozijske svojstva aluminijarske legure AA2024-T3 nakon uranjanja u vodenu otopinu NaCl s Cerij(III)-kloridom 70-81
9. M. Lafta, M. Bratošević
 Protection with corrosion inhibitors on damaged coating in seawater
 Zaštita inhibitortima korozije na oštećenim prevlakama u morskoj vodi

 Corrosion protection in flow conditions by carboxylic and phosphonic acids
 Korozijska zaštita u protočnim uvjetima primjenom fosfonskih i karboksilnih kiselina

11. S. Božović, S. Martínez, V. Grudić, A. Gezović
 Synergetic effect of propolis, tannin and benzoate on corrosion behavior of metal in 0.5M NaCl
 Sinergijsko djelovanje propolisa, tanina i benzoata na korozijsko ponašanje metala u 0.5M NaCl

12. K. Kekez, I. Rogan, L. Lokas, T. Madaoui
 Corrosion inhibition of equipment under hydrostatic test – experience from Algeria
 Inhibiranje korozije opreme pod hidrostatskom tlućnom probom – iskustva iz Alžira

13. M. Serdar, D. Bjegović
 Application of nano- and micro-indentation in the analysis of mechanical properties of corrosion products
 Primjena nano- i mikro-utiskivača u analizi mehaničkih svojstava korozijskih produkata

14. N. Pavić
 Corrosion protection by hot deep galvanizing
 Zaštita materijala vrućim pocinčavanjem

15. L. Pomenić
 Corrosion in electronics
 Korozija u elektronici

 Mechanical properties testing of steel 1.7131 after nitrocarburization
 Ispitanje mehaničkih svojstava čelička 1.7131 nakon nitrokarburiranja

17. M. Bilušić, B. Runje
 The influence of coating on the accuracy of the optical 3D measurement system
 Utjecaj premaza na točnost mjerenja optičkim 3D mjernim sustavom
CORROSION BEHAVIOR OF CuAlNiMn ALLOY IN 0.9% NaCl SOLUTION

KOROZIJSKO PONAŠANJE LEGURE CuAlNiMn u 0,9% NaCl OTOPINI

L. Vrsalović¹, I. Gotovac¹, S. Gudić¹, I. Ivičić², S. Kožuh², B. Kosec³, M. Bizjak³, T. Holjevac³, Grgurić², R. Pezer², M. Gojić³

¹Sveučilište u Splitu, Kimičko-tehnološki fakultet, Ruđera Boškovića 35, 21000 Split
²Sveučilište u Zagrebu, Metalički fakultet Sisak, Aleja narodnih heroja 3, 44103 Sisak
³Univerza v Ljubljani, Naravoslovnotehniški fakultet, Aškerčeva c. 12, 1000 Ljubljana, Slovenija

Abstract

The corrosion behavior of the CuAlNiMn alloy in 0.9% NaCl solution at pH 7.4, and temperatures of 25, 37 and 50 °C, was investigated by electrochemical methods such as monitoring the open circuit potential, linear and potentiodynamic polarization methods. Investigations were also performed in 0.9% NaCl solution at 37 °C and different pH of solution (pH = 3.4, 5.4 and 7.4). Results of the investigations have shown that increasing the temperature leads to the shift of the open circuit potential values in the negative direction and also leads to increase of the corrosion current density and decrease of the polarization resistance values. Decreasing the pH of solution leads to the increase of the corrosion current density and decrease the values of polarization resistance.

After the polarization measurements, corroded electrode surfaces was examined using an optical microscope and SEM. Microscopic images have shown the significant corrosion damages on the CuAlNiMn alloy surface, which manifests itself in the form of a thin leaf, with a larger part of the surface being covered with sheets of corrosion products loosely bonded to the surface which were elevated from the surface of the electrode. SEM surface analysis revealed the existence of two layers on the surface of the alloy: the exterior is extremely damaged, which represent sheets of loosely bonded surface, and an inner layer that also shows significant corrosion damage. The elemental composition of corrosion products on the surface of the samples was determined by EDS analysis.

Keywords: CuAlNiMn alloy, corrosion, polarization, electrochemical methods
Sažetak

Korozionsko ponašanje legure CuAlNiMn u 0.9% NaCl otoperini pri pH = 7.4 i temperaturi otoperine od 25, 37 i 50 °C ispitano je elektrokemijskim metodama kao što su praćenje potencijala otvorenog strujnog kruga, metodama linearnih i potenciodinamičke polarizacije. Ispitivanja su također provedena u 0.9% NaCl otoperini pri 37 °C i različitim vrijednostima pH otoperine (pH = 3.4, 5.4 i 7.4). Rezultati ispitivanja su pokazali da povećanje temperature elektrolita dovodi do negativiranja potencijala otvorenog strujnog kruga, a također i do povećanja vrijednosti gustoća korozionske struje i do smanjenja vrijednosti polarizacijskog otpora. Snižavanje pH otoperine dovodi do povećanja gustoće korozionske struje i do smanjenja vrijednosti polarizacijskog otpora.

Nakon polarizacijskih mjerenja korodirane površine elektroda ispitane su optičkim mikroskopom i pretražnim elektronskim mikroskopom (SEM). Mikroskopske snimke su pokazale značajna korozionska oštećenja na površini CuAlNiMn legure koja se manifestiraju u vidu svojevrsnog listanja, pri čemu je veći dio površine prekriven s listićima korozionskih produkata labavo vezanim za površinu koji se uzdižu s površine elektrode. SEM analiza površine otkrila je postojanje dvaju slojeva na površini legure: vanjski izrazito oštećen, koji predstavlja listice korozionskih produkata labavo vezane za površinu, i unutarnji sloj na kojem su također vidljive značajna korozionska oštećenja. EDS analizom određen je elementarni sastav korozionskih produkata na površini uzoraka.

Ključne riječi: CuAlNiMn legura, korozija, polarizacija, elektrokemijske metode
1. INTRODUCTION

Copper and its alloys belong to a group of technically most commonly used metal materials that have a large application in electrical engineering (electrical conductor manufacturing), heat exchanger manufacturing, boilers in the food and chemical industry, civil engineering, etc. [1-3]. The reason for their large application lies in desirable properties of these materials such as high electrical and thermal conductivity, good corrosion resistance, and favourable mechanical properties [1-2]. A special group of copper alloys are shape memory which has characteristic features such as superelasticity and shape memory effect owing to the reversible martensitic transformation [4-6]. Cu-based shape memory alloys are currently derived from three binary alloy systems i.e. Cu-Al, Cu-Zn and Cu-Sn [7]. Copper based shape memory alloys are less expensive compared to Ni-Ti alloy and are easier for preparation and processing [7,8]. The most important disadvantage of polycrystalline CuAlNi alloys is the small reversible deformation (one-way shape memory effect up to 4% and two-way effect around 1.5%) and their fragility at average stress levels [9]. The addition of alloying elements to Cu-Al-Ni alloy increases their mechanical properties and corrosion resistance, while the presence of the precipitates of Al/Ni-X (where X is alloying element) is essential to the passivation of Cu-Al-Ni alloys [6]. Several investigations have performed on Cu-Al-Mn-X alloys (X=Ni, Ag, Mg or Ti) and their results have shown that their various properties, damping and low critical stress to introduce martensitic transformation were improved through alloying [10-13]. Due to their very diverse applications, Cu-shape memory alloy are exposed to various corrosive environments, which can compromise their integrity. In this investigation the corrosion properties of Cu-Al-Mn-Ni alloy has been investigated in deaerated 0.9% NaCl solution at different temperatures of electrolyte and different pH of solution.

2. EXPERIMENTAL

Cu13-Al2.5-Ni2.5-Mn alloy was obtained by melting technically pure components (Cu, Al, Ni and Mn) in a vacuum induction furnace under a protective atmosphere of argon. The melting furnace is connected to a vertical continuous casting device and the entire process (melting and casting) is carried out in a protective atmosphere. The alloy is solidified in a water-cooled crystallizer to form an alloy rod of a certain diameter which coming out between the rollers that rotate in the direction of melt flow.

Working electrodes was obtained by cutting CuAlNiMn alloy into cylindrical samples and then they are connected by soldering with insulated copper wire to ensure good electrical contact. Samples are isolated with Polirepar S acrylate leaving only one base of cylindrical sample (P = 0.502 cm²) to be exposed to the electrolyte. Before each experiment, the electrode surface was mechanically treated with different grit emery papers (from 400 to 1500), polished with Al₂O₃ polishing paste (particle size 0.05 μm), ultrasonically degreased in ethanol, rinsed with deionised water and immersed in electrolyte solution.

Measurements were undertaken in a double wall glass three-electrode electrochemical cell connected to a thermostatic bath to ensure adjusting and maintaining the constant temperature of the electrolyte during the measurements. Electrochemical cell was equipped with Pt-plate counter electrode and saturated calomel electrode as the reference electrode. Electrochemical measurements were performed with a PAR 273A potentiostat/galvanostat.
The evaluation of corrosion behaviour of CuAlNi alloy in 0.9% NaCl solution were performed by open circuit potential measurements \((E_{OC}) \) in 60 min time period, linear polarization method in the potential region of ±20 mV around corrosion potential, with the scanning rate of 2 mV s\(^{-1}\) and potentiodynamic polarization method in the potential region of -0.250 V from open circuit potential to 1.100 V, with the scanning rate of 0.5 mV s\(^{-1}\). After the potentiometric polarization measurements the surface of the electrode were washed in deionized water, dried in the desiccator and then visualized by Canon sx60 HS camera in macro mode and the light microscope with magnification of 100 times. A more detailed surface analysis was performed with Scanning Electron Microscope Tescan Vega 5136 MM paired with Energy Dispersive Spectroscopy Microscopy (SEM/EDS).

3. RESULTS AND DISCUSSIONS

Figure 1 illustrates the influence of electrolyte temperature on the value of open circuit current potential of CuAlNiMn alloy in 0.9% NaCl solution at 37 °C, while Figure 2 shows the influence of solution pH on the value of \(E_{OC} \).

![Figure 1](image1.png)
Figure 1. Variation of the open circuit potential with time for the CuAlNiMn alloy in 0.9% NaCl solution at different temperatures of electrolyte.

![Figure 2](image2.png)
Figure 2. Variation of the open circuit potential with time for the CuAlNiMn alloy in 0.9% NaCl solution at different pH values of electrolyte.

It is apparent that the rise in electrolyte temperature leads to the changes of the \(E_{OC} \) CuAlNiMn alloy in the negative direction, which is particularly evident for the measurement at 50 °C. The influence of the solution pH on the value \(E_{OC} \) is shown in Figure 2. Lowering the pH values of the electrolyte leads to the negation of the open circuit potential of the CuAlNiMn alloy, which is particularly pronounced at the beginning of the measurements. Values of \(E_{OC} \) for the CuAlNiMn alloy in the NaCl solution at pH = 5.4 changes in negative direction in the first 10 minutes after the electrode immersion in the electrolyte solution, and after that have positive changes and after 60 minutes the value of \(E_{OC} \) is almost the same as the values of \(E_{OC} \) of the alloy in NaCl solution at pH = 7.4. Different behavior shows the investigated alloy in a NaCl solution at pH = 3.4, where the value of the open circuit potential changes in negative direction within the first 35 minutes of immersion in the solution and then the potential stabilization is followed by a certain fluctuation of the open circuit potential values which was not observed in the measurements at higher pH values of the solution.
The reason for this behaviour is probably due to the fact that at the lower pH of the NaCl solution there is a higher adsorption of chloride ions on the alloy surface, which causes higher changes of the values of open circuit potential to the negative direction, while potential fluctuations are results of the initial surface dissolution of the alloy.

A linear polarization measurement were undertaken immediately after E_{OC} measurements in order to determine polarization resistance values (R_p) which represent the resistance of metal to corrosion, and is defined by the slope of the polarization curve near the corrosion potential, by the equation (1):

$$R_p = \frac{\Delta E}{\Delta i} \text{ (}\Omega \text{ cm}^2\text{)}$$

The influence of the temperature on the slope of the linear parts of the polarization curves is shown in Figure 3, while the influence of the pH of the solution is shown in Figure 4.

![Figure 3](image.png)

Figure 3. Results of the investigation by linear polarization method for CuAlNiMn alloy in 0.9% NaCl solution at 25 °C (-), 37 °C (-) and 50 °C (-).

![Figure 4](image.png)

Figure 4. Results of the investigation by linear polarization method for CuAlNiMn alloy in 0.9% NaCl solution at pH = 7.4 (-), 5.4 (-) and 3.4 (-).

From the Figures 3 and 4 it is apparent that elevation of the electrolyte temperature as well as lower electrolyte pH value have a negative impact on the corrosion stability of the CuAlNiMn alloy and lead to a decrease in the slope of the linear curve parts indicating a lowering the polarization resistance values.

Potentiodynamic polarization curves were recorded in wide potential area from -250 mV vs. E_{OC} up to 1.1 V and the results are shown in Figure 5 and 6.

![Figure 5](image.png)

Figure 5. Potentiodynamic polarization curves for CuAlNiMn alloy in 0.9% NaCl solution at 25 °C (-), 37 °C (-) and 50 °C (-).

![Figure 6](image.png)

Figure 6. Potentiodynamic polarization curves for CuAlNiMn alloy in 0.9% NaCl solution at pH = 7.4 (-), 5.4 (-) and 3.4 (-).
Figure 5 shows the influence of electrolyte temperature on the potentiodynamic polarization curve for CuAlNiMn in 0.9% NaCl solution. Increase in electrolyte temperature leads to an increase in the anodic and cathodic current density resulting in higher corrosion density, i.e., greater corrosion attack on the CuAlNiMn alloy. There is also a negative correlation of corrosion potential with an increase in electrolyte temperature.

Lowering the pH value of the electrolyte (Figure 6) greatly influences on the increase in anodic current density and also leads to a shift of the corrosion potential to a negative direction.

Corrosion parameters which are determined from potentiodynamic polarization measurements and are presented in Table 1, along with the values of the polarization resistance obtained from linear polarization measurements.

<table>
<thead>
<tr>
<th>Measurement conditions</th>
<th>i_{corr} (µA cm$^{-2}$)</th>
<th>E_{corr} (V)</th>
<th>R_p (kΩ cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C, pH = 7.4</td>
<td>7.3</td>
<td>-0.320</td>
<td>3.420</td>
</tr>
<tr>
<td>37 °C, pH = 7.4</td>
<td>10.7</td>
<td>-0.354</td>
<td>2.120</td>
</tr>
<tr>
<td>37 °C, pH = 5.4</td>
<td>11.2</td>
<td>-0.354</td>
<td>1.739</td>
</tr>
<tr>
<td>37 °C, pH = 3.4</td>
<td>14.6</td>
<td>-0.441</td>
<td>1.204</td>
</tr>
<tr>
<td>50 °C, pH = 7.4</td>
<td>22.1</td>
<td>-0.391</td>
<td>0.914</td>
</tr>
</tbody>
</table>

After polarization measurements, the surface of the CuAlNiMn electrode was examined using a light microscope, and the results of investigations have shown in Figure 7.
Figure 7. CuAlNiMn alloy surface images after polarization measurements 0.9% NaCl solution (pH=7.4 at different temperatures of electrolyte: a) 25 °C, macro image b) 25 °C, with magnification of 100 times. c) 37 °C, macro image d) 37 °C, with magnification of 100 times. e) 50 °C, macro image d) 50 °C, with magnification of 100 times.

At macro image of the CuAlNiMn alloy surface, after polarization measurement in NaCl solution at 25 °C (Figure 7 a), significant corrosive damage is observed. There is a rupture of thin layers of corrosion products from the surface, while on the edges of the electrode there are indication of the appearance of pitting corrosion. This behaviour differs from the behaviour of the CuAlNi alloy which was investigated under the same conditions and where the dominant corrosion attack was pitting corrosion without the appearance of these poorly attached surface layers [14].

Figure 7 c) and d) shows the state of CuAlNiMn alloy surface after potentiodynamic polarization measurement in 0.9% NaCl solution at 37 °C and in Figure 7 e) and f) at 50 °C. After polarization at 37 °C, intense corrosion damages is seen on the surface of the electrode in the form of a thin leaf (exfoliation), with a large part of the surface covered with sheets of corrosion products loosely bonded to the surface which were elevated from the surface of the electrode.

After polarization measurements at 50 °C, the surface of CuAlNiMn alloy are completely hollowed out as a result of pitting corrosion (Figure 7 c) and f)).

More detailed information on the surface condition of the samples was given by the SEM / EDS analysis, the results of which are shown in Figure 8 a)-d). Figure 8 shows the surface of CuAlNiMn alloy after potentiodynamic polarization measurement in a 0.9% NaCl solution at 50 °C.
Two layers of corrosion products are visible on the electrode surface, porous outer surface and also highly damage interior layer. The elemental composition of the surface layer shows the dominant element Cu along with the detected presence small amount of Al, Mn and Cl.

<table>
<thead>
<tr>
<th>Element</th>
<th>wt. %</th>
<th>at. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>96.20</td>
<td>96.85</td>
</tr>
<tr>
<td>Al</td>
<td>0.58</td>
<td>1.34</td>
</tr>
<tr>
<td>Cl</td>
<td>0.67</td>
<td>1.3</td>
</tr>
<tr>
<td>Mn</td>
<td>0.56</td>
<td>0.64</td>
</tr>
</tbody>
</table>

![SEM images of CuAlNiMn alloy surface after potentiodynamic polarization in 0.9 NaCl solution (pH = 7.4 and T = 50 °C) with magnification of 1000 times a) and c) along with EDS surface analysis b) and d).](image)

The elemental analysis of the inner surface layer revealed the presence of small quantities of Ni, which is not detected in the outer surface layer. Also, the percentage of Mn is higher and the percentages of Al lower than in outer surface layer.

Unlike CuAlNi electrodes, where surface layers of corrosive products emerged in the form of raised "spikes" beneath which there were pits [15], the investigated CuAlNiMn alloy showed much greater corrosion destruction of the surface. These observations are contradicted by literature findings in which alloying CuAlNi alloys with elements such as Mn or Ti lead to improved mechanical properties of the alloy and increases their corrosion resistance [6]. Some end associates [6] have found that the addition of Mn as a alloying element to CuAlNi alloy the amount up to 0.7% leads to the increased corrosion resistance of the alloy due to the reduction of the grain size in the material as well as the increase in the stability of the passive film on the alloy surface. However, further increase in Mn content in the alloy increases grain size and reduces corrosion resistance. Since the content of Mn in the investigated alloy is relatively high (2.5%), this could be one of the reason for the worsening of corrosion resistance due to grain size growth.
4. CONCLUSIONS

- Increasing the electrolyte temperature as well as decreasing the pH leads to the shifting open circuit potential of the CuAlNiMn alloy towards negative values, increasing the corrosion current density and reducing the polarization resistance values.

- Microscopic images show significant corrosion damages on the CuAlNiMn alloy surface, which manifests itself in thin layers like leaves, with a large part of the surface covered with corrosion-free slip sheets bonded to the surface that rises from the surface of the electrode. Electrode surfaces from which loosely bonded corrosion products are removed have visible damage caused by pitting corrosion.

- SEM surface analysis revealed the existence of two layers on the surface of the alloy: the exterior which is extremely damaged, and consist of thin layers of the corrosion products loosely bonded to the surface, and the inner layer which also shows significant corrosion damage.

- Using EDS surface analysis the elemental composition of the surface was determined. The dominant element in both layers was Cu along with the small quantities of Al, Mn and Cl in the upper layer of corrosion product, while in inner layer was found Ni and relatively higher percentage of Mn compared with upper layer.

Acknowledgements

This work has been fully supported by Croatian Science Foundation under the project IP-2014-09-3405.

5. REFERENCES

