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Energy consumption of fuel-fired industrial furnace accounts for about 23% of 
the national total energy consumption every year in China. Meanwhile, the re-
duction of combustion-generated pollutants in furnace has become very im-
portant due to the stringent environment laws and policy introduced in the recent 
years. It is therefore a great challenge for the researchers to simultaneously en-
hance the fuel efficiency of the furnace while controlling the pollution emission. 
In this study, a transient 3-D mathematical combustion model coupled with heat 
transfer and pollution formation model of a walking-beam-type reheating furnace 
has been developed to simulate the essential combustion, and pollution distribu-
tion in the furnace. Based on this model, considering nitrogen oxides formation 
mechanism, sensitivity study has been carried out to investigate the influence of 
fuel flow rate, air-fuel ratio on the resultant concentration of nitrogen oxides in 
the flue gas. The results of present study provide valuable information for im-
proving the thermal efficiency and pollutant control of reheating furnace. 

Key words: energy consumption, reheating furnace, combustion,  
pollutant formation, nitrogen oxides emissions 

Introduction  

In 2016, China’s crude steel output was 808 million tons, the comprehensive energy 

consumption of per ton steel iron and steel industry was recorded as 572 kg(ce)/t (kg of coal 

equivalent per tone). Obviously, energy saving is one of the challenging tasks of the Chinese 

steel enterprises. On the other hand, as China’s environmental pollution problem has increas-

ingly become serious in recent years, environmental protection is another big challenge for 

China. Reheating furnace is one the most important equipment in the steel rolling process. 

The energy consumption of reheating furnace accounts for about 25% of total energy con-

sumption of steel industry [1]. So, the improvement of energy efficiency of reheating furnace 

is very important for energy conservation and emissions reduction. The NOx emission is one 

of mainly pollutant emissions of reheating furnace because the high combustion temperature. 

A great deal of attention is required to enhance the operating performance and to reduce NOx 

emission of reheating furnace. 
–––––––––––––– 
* Corresponding author; e-mail: qifs@mail.neu.edu.cn 
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Many efforts have been done to reveal the physical and chemical characteristics in 

the reheating furnace. Some mathematical models were developed to study the radiation heat 

transfer in reheating furnace. In the early stage, a push-type reheating furnace was divided 

into sub-zones, at each zone, only radiative heat transfer was considered, and temperatures of 

the medium and the wall for each sub-zone were set to fixed value [2]. After that, a series of 

CFD models were preformed to predict the temperature distribution in the furnace and the 

slabs, these models can be used for accurate prediction of the thermal, combustion and flow 

characteristics in the furnace, but there existed such difficulties as treatment of so many gov-

erning equations and complexity of the furnace structure as well as uncertainty of the models, 

therefore, it necessitates long computational time and costs [3-5]. Han et al. [6-9] have made 

outstanding contributions on transient radiative heating characteristics inside the reheating 

furnace. In their study, the thermal efficiency of a reheating furnace was predicted by consid-

ering radiative heat transfer to the slabs and the furnace wall. Furthermore, the effect of vari-

ous fuel mixtures on the performance of a reheating furnace was also investigated. With the 

development of computational hardware and numerical methods, analysis of combustion pro-

cess in reheating furnace has been performed. Zhang et al. [10] developed a numerical model 

to calculate the combustion process in a regenerative reheating furnace with the commercial 

software FLUENT. In their study, the geometry of the furnace was simplified as a rectangle. 

Stockwell et al. [11] have built a numerical model to predict the combustion process in an 

experimental regenerative reheating furnace. The predicted results were compared against 

experimental measurements. Other researchers
 
[12, 13] have used another commercial compu-

tational fluid dynamics software package, PHOENICS to develop a 3-D model of pusher-type 

slab reheating furnace to gain knowledge of gas flows and temperature distribution in the 

furnace. Harish et al. [14] have presented a computational model for the heat transfer in a 

direct-fired pusher type reheating furnace by using the finite volume method for gas radiative 

heat transfer and weighted-sum-of-gray-gases model for non-gray behavior of the combus-

tion gases within the furnace. Hsieh et al. [15] have investigated the turbulent reactive flow 

and radiative heat transfer problem in a walking-beam-type slab reheating furnace by the 

commercial software STAR-CD. Their model considers the whole furnace, including the 

burners, the walking-beam system with skid buttons, the slabs, the dams, and the down-take 

outlet. Wang et al. [16] developed a CFD model to analyze the slab heating characteristics 

in a reheating furnace where the probability density function model were used to simulate 

the combustion process in the reheating furnace. So far, the prediction of NO emission in 

heating furnace has not been reported. Some researchers have studied NOx emissions from 

other industrial furnaces. Ishii et al. [17] have built a numerical model to investigate the 

NOx emissions in a regenerative furnace, in this model three chemical kinetic processes for 

NOx formation are included. Khalilarya and Lotfiani [18] have provided a numerical study 

of flow pattern and its effect on NOx emissions in a single chamber square tangentially fired 

furnace. The combustion process has simulated using a global on-step reaction mechanism 

and the turbulence-chemistry interaction has been taken into account using the eddy-

dissipation model. 

In this study, a transient 3-D mathematical combustion model coupled with the pol-

lution formation model in a walking-beam-type reheating furnace has been developed to study 

the combustion and temperature distribution in the furnace. Based on this model, considering 

NOx formation mechanism, the influence of fuel flow rate, air-fuel ratio on the concentration 

of NOx in flue gas has been investigated. The results are of great significance for the control 

of combustion and heat transfer in the heating furnace and the reduction of NOx emission. 
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Mathematical model 

The function of the reheating furnace is to heat steel slabs nearly up to 1,250 °C uni-
formly for the subsequent rolling process. At present, there are two types of commonly used 
slab-reheating furnaces; the pusher type and the walking-beam type. For the walking-beam 
type reheating furnace, the energy for slab heating is supplied by the roof and side gas burn-
ers. The combustion process of a walking-beam reheating furnace involves complex physical 
and chemical processes, including turbulent flow, chemical reaction, heat transfer, species 
transport and so on. This study aims to develop a comprehensive numerical model that con-
siders all the relevant physical and chemical considerations in a walking-beam type reheating 
furnace. The numerical model was developed based on the commercial CFD package ANSYS 
FLUENT. Bases on the framework of the software, the following conservation equations were 
considered. 

Turbulent combustion model 

The equations that govern the conservation of mass, momentum, and energy, as well 
as the equations of species transport, can be expressed in the following general form: 

( ) ( )i

i i i

u S
t x x x
  

    
    

    
F

F
F F  (1) 

When Ф = 1, equations stands for the continuity equation. While a substitution of 
velocity components in to Ф generates the momentum equation for each respective direction. 
The enthalpy conservation equation can be obtained when the mixture enthalpy is substituted 
into Ф. When the mass fraction Yi is substituted into Ф, the conservation equation of species 
mass fraction is obtained. In the equation, the density ρ is determined by incompressible-
ideal-gas law. 

It is well known that the realizable k-ε turbulence model is relatively stable, robust 
and computationally efficient. Therefore, the realizable k-ε turbulence model was used to 
simulate the turbulent flow in this study. The P-1 model gives good results in many circum-
stances without making the problem computationally intensive, and it takes into account the 
effects of scattering. So, the P-1 model was used to calculate the radiation heat transfer in 
present study. In this study, reaction rates are assumed to be controlled by turbulent mixing, 
the effect of chemistry timescales is ignored, and so expensive Arrhenius chemical kinetics 
calculations are avoided. The combustion is modeled using a global one-step reaction mecha-
nism, turbulence-chemistry interaction is considered using the eddy-dissipation model. 

The NO modeling 

The NOx formation and destruction process in combustion systems are very complex 
phenomenon. During the combustion reaction, nitrogen either in the air or in the fuel is con-
verted to nitrogen-containing pollutants such as NO, NO2, nitrous oxide (N2O), ammonia 
(NH3) and hydrogen cyanide (HCN). The pollutants depend on the temperature and species of 
the fuel. The processes are highly complex, involving a large number of inter mediate species. 
However, in this study, only a few global steps are considered for simulation NOx formation 
to facilitate their interaction with velocity, temperature and concentration field. The transport 
equation of NO is given: 

NO

NO NO NO NO( ) ( )i

i i i
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  
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where DNO is the effective diffusion coefficient and SNO – the source term, which is deter-

mined by different NOx generation mechanism. The thermal NOx and prompt NOx are consid-

ered in this study.  

For the thermal NOx mechanism: 

thermal

thermal,NO ,NO

d[NO]

d
S M

t
  (3) 

The thermal NOx rate of formation/destruction is significant at high temperature, it 

can be determined by the extended Zeldovich mechanism. The net rate of for-

mation/destruction is given [18]: 
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where [O] = 36.64 T
 1/2

 [O2]
 1/2

 e
 −27,123/T

 mol/m
3
. 

For the prompt NOx mechanism: 

prompt

prompt,NO ,NO

d[NO]

d
S M

t
  (5) 

A modified De Soete model has been used in present simulation [17, 19].  

A correction fator (F) which incorporates the effect of number of carbon atoms and the air-

fuel ratio: 

 
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where Ea is 303,474.125 J/mol, n is the number of carbon atoms per molecule, andΨ is 

equivalence ratio. The oxygen reaction order a depends on flame conditions and can be calcu-

lated by oxygen mole fraction in the flame: 
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(9) 

Computational domain and mesh generation 

Figure 1 shows the schematic of the walk-beam reheating furnace which is simpli-
fied furnace model from a walk-beam type reheating furnace of one of Chinese steel enter-
prises. The dimensions of the furnace are 51.7 m × 11.7 m × 4.35 m and the furnace contains 
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35 slabs. The size of each slab is 10.5 m × 1.4 m × 0.23 m. This furnace can be divided into 
four zones:  
– preheating zone,  
– first heating zone,  
– second heating zone, and  
– soaking zone as shown in fig. 1(b).  

A total of thirty flat burners were uniformly set on the top of the soaking zone, and 
other fifty-eight flame burners were set on the two sides of the furnace. Each burner is simpli-
fied with two concentric circles. The inner circle is used for fuel passage and the annulus 
formed by two concentric circles is used for air passage. For the flat burners, the diameter of 
the inner circle and the outer circle are 0.08 m and 0.18 m, respectively, for blame burners, 
the diameter of the inner circle and the outer circle are 0.18 m and 0.38 m, respectively. 

As the furnace is symmet-
rical, in order to reduce the 
amount of calculation, half of 
the furnace was selected as 
computational domain. A hy-
brid structured and unstructured 
meshes were generated throu-
ghout the computational do-
main. As shown in fig. 2, local 
mesh refinements were also 
employed to capture the local 
flow structure and combustion 
process in the furnace. Based 
on the gird independence analy-
sis, the final mesh with the total 
grid nodes of 4.32 million was 
used for numerical simulations. 

Operation parameters and 

boundary conditions 

All boundary conditions 

are set with reference to the 

typical operating parameters. 

The fuel is the mixture gas of 

blast furnace gas, coke oven gas, converter gas and nature gas. The fuel compositions are 

shown in tab. 1. Because the content of ethylene (C2H4) is very low, the conservation equation 

of CO, H2, and CH4 have been solved in this study. The furnace outlet is considered as pres-

sure outlet. As mentioned before, half of the furnace was selected as computational domain, 

the symmetry surface is shown in fig. 2. The top wall, bottom wall and side walls are assumed 

as non-slip wall and the he heat flux of the walls set to 500 W/m
2
 according to the experience. 

The skid beam wall was set as convection heat transfer boundary with convection heat trans-

fer coefficient is 300 W/m
2
K. Three inlet flow rates of the fuel were investigate in this study, 

they are 6900 Nm
3 

per hours, 8600 Nm
3
 per hours, and 10400 Nm

3
 per hours. The air-fuel 

ratios were set as 1.05, 1.1, and 1.2, respectively. 

 
(a) 

 
(b) 

Figure 1. Schematic of the walk-beam reheating furnace; (a) 3-D 
view, (b) cross-section 

 

Figure 2. Grids of the computational domain 
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Table 1. Composition of fuel 

Species CO H2 CH4 C2H4 N2 CO2 O2 
Fraction 0.2708 0.1404 0.0772 0.0063 0.3491 0.1457 0.0104 

Results and discussion 

Model validation 

Measurements from an on-site field test are used for model validation in present 

study. In the field test, eight thermocouples set on the upper and down regions of the wall 

were used to measure the temperature at different zones of the furnace. Table 2 shows the 

comparison between the simulated and measured temperature at the different testing locations 

when fuel flow rate is 8600 Nm
3
/h and the air-fuel ratio is 1.1. As depicted, the predicted 

temperatures are well agreed with the measured results. The averaged prediction error is 

around 5% which shows the validity of the present numerical model in predicting temperature 

in the reheating furnace. 

Table 2. Comparison of predict temperature with measurement data  

Test point 
Preheating 

zone 1 
Preheating 

zone 2 
First heating 

zone 1 
First heating 

zone 2 

Second 
heating 
zone 1 

Second 
heating 
zone 2 

Soaking 
zone 1 

Soaking 
zone 2 

Measured [°C] 1007.1 946.9 1161.0 1155.3 1191.2 1165.7 1134.6 1127.6 

Predicted [°C] 1061.4 911.1 1214.5 1117.5 1157.4 1151.6 1061.9 1046.4 

Relative error +0.054 −0.038 +0.046 −0.033 −0.028 −0.012 −0.064 −0.072 

Flow field and temperature distribution 

In the rehearing furnace, the fuel gas is injected into the chamber from the flame 

burners on each side of the furnace. At the upper part of soaking zone, the flat flame burners 

were used. The flame structure of the flat flame burners looks like a disk, which can transfer 

the heat to the slabs uniformly. At the inlet of the flat flame burner, a swirling flow was oc-

curred to form the big flat flame. Figures 3(a) and 3(b) show the flow field on different sec-

tions of the furnace. From fig. 3(b), it can be seen the fuel and air injected into the chamber 

and move to the outlet of the furnace. The higher velocities are located at the inlet and the 

middle of preheating zone. From fig. 3(a), it can be seen, at the down part of the combustion 

chamber, the velocity is smaller because the flowing area is larger than that at the upper parts. 

Furthermore, it is obvious that the velocity near the slabs is larger, that is very beneficial for 

convective heat transfer for slab. 

Figures 4(a) and 4(b) show the temperature distribution of the furnace on plane  

z = 2.9 m and y = 3.35 m. From fig. 4(b), it can be observed that the fuel gas and air start to 

burn at the outlet of the burners. The mean temperature at soaking zones is about 1150 °C and 

temperature distribution is more uniform than other zones because the flat flame burner was 

used at the upper part of soaking zone, which can ensure the temperature of the heated slabs is 

uniform. The mean temperature in the first and second heating zones are about 1170 °C and 

1180 °C, respectively. During the actual heating process, the slabs were heated rapidly in 

these zones. This furnace was designed to use the waste heat to preheat slabs, at the preheat-

ing zone only six burners were set. And the temperature at preheating zone is lowest. 

Figures 5(a) and 5(b) show the temperature curves along the centerline of the fur-

nace at different fuel flow rates and air-fuel ratio, respectively. It can be observed that with 
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the fuel flow rate increases from 6900 Nm

3
 per hours to 10400 Nm

3
 per hours, the tempera-

ture in the furnace increases about 120 °C. And with the air-fuel ratio increases from 1.05 to 

1.2, the temperature in the furnace increases about 30 °C. 

 
(a) 

 
(b) 

Figure 3. Flow field on different planes of the furnace; (a) z = 2.9 m, (b) y = 3.35 m 

 

Figure 4. Temperature distribution of the furnace on different planes: (a) z = 2.9 m; (b) y = 3.35 m 

 
(a) 

 
     (b) 

Figure 5. Temperature along the centerline of the furnace; (a) different fuel flow rates, (b) different  
air-fuel ratios   
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The NO
X
 distribution 

High temperature in the furnace can generate the NOx, and the main NOx emission 

in a reheating furnace is NO. Figure 6 shows NO mass fraction on the section of y = 3.35 m. 

From the figures, it can be seen the NO concentration is very low at the out let of the furnace. 

Based on the Zeldovich theory, the thermal formation should be highly dependent on tem-

perature. As the temperature greater than 1530 °C, the rate of thermal NO formation becomes 

larger suddenly, and it doubles for every 90 °C temperature increase beyond 1930 °C. But in 

this study, the temperature of the reheating furnace is below 1530 °C, so the thermal NO for-

mation is not large. Furthermore, the NO mass fraction at soaking zone is smaller than that at 

first heating zones because the local high temperature occurs at heating zones, which leads to 

more NO generation. The prompt NO formation is mainly dependent on the fuel type and the 

oxygen concentration. Hydrocarbon fuels produce a large number of NO under a certain fuel-

air ratio. In this study, the amount of CH4 in the fuel is only 13%, so the prompt NO for-

mation has little effect on the whole NO generation. 

 
Figure 6. The NO mass fraction on the plane of y = 3.35 m 

Figures 7(a) and 7(b) shows NO concentration along the furnace length direction at 

different fuel gas flow rates and different air-fuel ratios, respectively. With the fuel flow rate 

increasing from 6900 Nm
3
 per hours to 10400 Nm

3
 per hours, the concentration of NO in-

creases about 30 mg/m
3
, because with the fuel gas flow rate increasing, the temperature increas-

es, high temperature results in high NO production. On the other hand, with the increasing of 

air-fuel ratio from 1.05 to 1.2, the concentration of NO increases about 6%. At large air-fuel 

ratio, the N2 has more opportunities to react with O2, and more NO generated. So, the air-fuel 

ratio should be strictly controlled in the actual production processes of reheating furnace. 

 
(a) 

 
   (b) 

Figure 7. The NO concertation along the furnace: (a) at different fuel flow rate; (b) at different  

air-fuel ratio 
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Conclusion 

In the present work, a transient 3-D mathematical combustion model coupled heat 

transfer and pollution formation model of a walking-beam-type reheating furnace has been 

developed. Using the model, the flow field, temperature distribution, the NO concentration of 

the reheating furnace can be obtained. Based on the predicted results, NO concentration in the 

furnace at different fuel flow rates and different air-fuel ratios have been analyzed. With the 

air-fuel ratio increasing from 1.05 to 1.2, the concentration of NO increases about 6%. The 

model and results of present study provide theory basis to the improvement of thermal effi-

ciency and pollutant control of reheating furnace. The air-fuel ratio should be strictly con-

trolled in the actual production processes of reheating furnace. 
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Nomenclature 

a ‒  oxygen reaction order 

DNO ‒  the effective diffusion coefficient 

Ea ‒  activation energy, [Jmol−1] 

F ‒  correction factor 

kr,1, kr,2 ‒  kinetic rate constants, for reverse 

reactions 

kf,1, kf,2, 

kf,3 

‒  kinetic rate constants, for forward 

reactions 

MωNO ‒  the molecular weight of NO, [kgmol−1] 

n ‒  the number of carbon atoms 

per molecule 

p ‒  pressure, [Pa] 

R ‒  the universal gas constant 

SФ ‒  source term for various Ф 

SNO ‒  source term for NO 

Sprompt,NO ‒  source term for prompt NO 

Sthermal,NO ‒  source term for thermal NO 

T ‒  temperature, [K] 

t ‒  time, [s] 

ui ‒  velocity at different direction, [ms−1] 

xi ‒  Cartesian co-ordinates 

YNO ‒  the mass fraction of NO in the gas phase 

[FUEL] ‒  concentration of fuel, [molm−3] 

[N2] ‒  concentration of N2, [molm−3] 

[O] ‒  concentration of O atoms, [molm−3] 

[O2] ‒  concentration of O2, [molm−3] 

[NO] ‒  concentration of NO [molm−3] 

[OH] ‒  concentration of free radical OH, 

[molm−3] 

Greek symbols 

ρ ‒  density, [kgm−3] 

ГФ ‒  the diffusion coefficient, [‒] 

Ψ ‒  equivalence ratio, [‒] 

Ф ‒  the dependent variable, [‒] 
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